如图,两个问题分别从左右两侧逼近最优值。
如果原问题是求目标函数最小化,那么对偶问题就是在寻找原问题目标函数的下界。
如果原问题是求目标函数最大化,那么对偶问题就是在寻找原问题目标函数的上界。
哪些情况下,考虑对偶问题有助于求解原问题?
1.原问题约束多、变量少时,求解对偶问题能够降低计算时间
使用单纯形法时,如果原问题约束多变量少,转换成对偶问题,就是约束少变量多。回顾单纯形法的原理,约束的减少能够有效降低计算时间。
2.帮助证明原问题无解
类似“证明无罪比证明有罪更难”,要证明原问题有解,只需要找出一个满足约束的点;却不能通过遍历所有的点来证明原问题无解。对偶问题的出现为证明原问题无解提供了思路,具体的方法在Farkas lemma部分展开说明。
3.便于进行敏感度分析
很多时候我们对原问题的好奇心并不仅限于得到最优解,而是还关注「如果某些已知条件发生变化,对最优解的影响程度如何」,这就是敏感度分析。
对偶问题和敏感性分析息息相关。
一是增加敏感度分析的直观程度(例如,对偶问题的最优解就是原问题约束的影子价格)。
二是在改变某些条件导致原问题无可行解时,可以借助仍然有可行解的对偶问题来分析。
影子价格名词解释:
影子价格是用来表示某