【图像处理】图像拼接——图像配准、图像融合

此文主要三点:SIFT、SFLN、伪逆算法

实现图像拼接简单来说有以下几步:

(1)对每幅图进行特征点提取
(2)对特征点进行匹配
(3)进行图像配准
(4)把图像拷贝到另一幅图像的特定位置
(5)对重叠边界进行特殊处理

图像拼接方法通过图像配准图像融合的方法,解决了同一场景中两幅图像的小重叠,并最终融合成一幅宽角度、高分辨率的图像。
图像配准:主要解决的是将在各自坐标下的两幅图像转换为在同一坐标下的一幅图像。
图像融合:主要解决拼接图像像素的灰度值问题。


图像配准

在这里插入图片描述
图像配准方案包括两个阶段:预配准阶段配准阶段
首先,在预注册阶段,首先对参考图像进行透视变换生成一个训练集,利用SIFT方法从训练集中提取特征系数,然后将这些特征系数输入SLFN进行训练。
其次,训练好的SLFN的输出是那些透视图转换参数。因为SLFN已经经过训练,所以

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值