图像拼接——图像配准、图像融合
此文主要三点:SIFT、SFLN、伪逆算法
实现图像拼接简单来说有以下几步:
(1)对每幅图进行特征点提取
(2)对特征点进行匹配
(3)进行图像配准
(4)把图像拷贝到另一幅图像的特定位置
(5)对重叠边界进行特殊处理
图像拼接方法通过图像配准和图像融合的方法,解决了同一场景中两幅图像的小重叠,并最终融合成一幅宽角度、高分辨率的图像。
图像配准:主要解决的是将在各自坐标下的两幅图像转换为在同一坐标下的一幅图像。
图像融合:主要解决拼接图像像素的灰度值问题。
图像配准
图像配准方案包括两个阶段:预配准阶段和配准阶段
首先,在预注册阶段,首先对参考图像进行透视变换生成一个训练集,利用SIFT方法从训练集中提取特征系数,然后将这些特征系数输入SLFN进行训练。
其次,训练好的SLFN的输出是那些透视图转换参数。因为SLFN已经经过训练,所以