经典回归算法:

这篇博客介绍了如何在Python中结合numpy和matplotlib库进行线性回归分析,并在同一图表上展示两个不同函数。首先定义了标准回归函数standRegres,接着加载数据集loadDataSet。最后,drawpictrue函数用于绘制散点图和线性回归线,通过plt.plot添加了预测函数到已有的散点图上,实现了数据的可视化展示。
摘要由CSDN通过智能技术生成

一个小知识为:
在同一张图上显示两个不同的函数:
只需要在ax = scatter()的基础上
ax = plt.plot(x,y) 即可

import numpy as np
import matplotlib
import matplotlib.pyplot as plt

def standRegres(xArr,yArr):
        xMat = np.mat(xArr)
        yMat = np.mat(yArr).T
        xTx = xMat.T *xMat
        if(np.linalg.det(xTx)) ==0.0:
                print("这个矩阵没有逆,则无法求解线性回归")
                return
        ws = xTx.I * (xMat.T*yMat)
        return ws

def loadDataSet(filename):
        numFeat = len(open(filename).readline().split('\t')) - 1
        dataMat = []
        lableMat = []
        fr = open(filename)
        for line in fr.readlines():
                lineArr = []
                curline = line.strip().split('\t')
                for i in range(numFeat):
                        lineArr.append(float(curline[i]))
                dataMat.append(lineArr)
                lableMat.append(float(curline[-1]))
        return dataMat,lableMat

def drawpictrue(xArr,yArr):
        xdatingMat = []
        for i in range(len(xArr)):
                xdatingMat.append([xArr[i][1],yArr[i]])
        datingMat = np.array(xdatingMat)
        fig = plt.figure(0)
        ax = fig.add_subplot(111)
        ax.scatter(datingMat[:,0],datingMat[:,1])
        ws = standRegres(xArr,yArr)
        xMat = np.mat(xArr)
        yMat = np.mat(yArr)
        yHat = xMat*ws
        xCopy = xMat.copy()
        xCopy.sort(0)
        yHat = xCopy*ws
        ax = plt.plot(xCopy[:,1],yHat)
        plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值