【How Kalman Fliters Works,卡尔曼滤波(五)附录2:根据协方差绘制置信(误差)椭圆】

本文翻译自本文翻译自How Kalman Filters Work,考虑到专业水平有限,如有问题和建议,欢迎在评论区讨论!

这里写目录标题

原理

置信椭圆(2 维)、置信椭球(3 维)是置信区间(1 维)向高维的延伸,是代表高斯分布的等值曲线(这条线上的概率密度相同),而利用我们已有的基础知识来绘制协方差矩阵是非常容易的。
首先,根据定义,单位圆是单位正态分布的 1σ 边界。根据7.1 小节可知,如果将单位正态分布的点乘以 C,就能得到其他分布。矩阵 C 将随机采样点从单位正态分布映射到另一种分布。同理,它可以将单位分布的 1σ 圆上的点映射到所需分布的 1σ 圆上。代码很简单:

代码

[U, S]  = svd(P);                   % SVD of relevant dimensions of P
C       = U * sqrt(S);              % Form matrix square root.
theta   = linspace(0, 2*pi, 100);   % Make 100 points from 0 to 2*pi.
circle  = [cos(theta); sin(theta)]; % Make a unit circle.
ellipse = C * circle;               % Map points of circle to ellipse.

在弹跳球Sigma-Point滤波器的例子中,我们画出了随时间变化的椭圆,计算出了与协方差矩阵位置部分P(1:2,1:2)相对应的椭圆。当然,如果我们希望椭圆以状态估计值为中心,我们就需要在椭圆的每个元素上加上状态估计值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值