本文翻译自本文翻译自How Kalman Filters Work,考虑到专业水平有限,如有问题和建议,欢迎在评论区讨论!
原理
置信椭圆(2 维)、置信椭球(3 维)是置信区间(1 维)向高维的延伸,是代表高斯分布的等值曲线(这条线上的概率密度相同),而利用我们已有的基础知识来绘制协方差矩阵是非常容易的。
首先,根据定义,单位圆是单位正态分布的 1σ 边界。根据7.1 小节可知,如果将单位正态分布的点乘以 C,就能得到其他分布。矩阵 C 将随机采样点从单位正态分布映射到另一种分布。同理,它可以将单位分布的 1σ 圆上的点映射到所需分布的 1σ 圆上。代码很简单:
代码
[U, S] = svd(P); % SVD of relevant dimensions of P
C = U * sqrt(S); % Form matrix square root.
theta = linspace(0, 2*pi, 100); % Make 100 points from 0 to 2*pi.
circle = [cos(theta); sin(theta)]; % Make a unit circle.
ellipse = C * circle; % Map points of circle to ellipse.
在弹跳球Sigma-Point滤波器的例子中,我们画出了随时间变化的椭圆,计算出了与协方差矩阵位置部分P(1:2,1:2)相对应的椭圆。当然,如果我们希望椭圆以状态估计值为中心,我们就需要在椭圆的每个元素上加上状态估计值。