Python设置随机数种子

参考链接: Reproducibility

随机数种子用于复现随机的情形,相同的随机数种子可以产生相同的随机情形,直接贴出代码:


# 设置随机数种子
import numpy as np
import random
import torch
import os
seed = 20200910
os.environ['PYTHONHASHSEED'] = str(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)  # if you are using multi-GPU.
np.random.seed(seed)  # Numpy module.
random.seed(seed)  # Python random module.
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# You need to set the init function of the worker(s) to be fed to the DataLoader:
def _init_fn(worker_id):
    np.random.seed(seed)
r""" 
trainloader = DataLoader(trainset, batch_size=batch_size, 
    shuffle=True, num_workers=num_workers,   
    pin_memory=True, worker_init_fn=_init_fn)

"""

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值