torch.exp()的使用举例

本文介绍了PyTorch中的torch.exp()函数,用于计算输入张量每个元素的指数值。通过代码示例展示了如何使用该函数,并展示了不同输入情况下输出的结果,包括常数、一维和二维张量的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考链接: torch.exp(input, out=None)
参考链接: exp()

在这里插入图片描述

代码实验展示:

Microsoft Windows [版本 10.0.18363.1256]
(c) 2019 Microsoft Corporation。保留所有权利。

C:\Users\chenxuqi>conda activate ssd4pytorch1_2_0

(ssd4pytorch1_2_0) C:\Users\chenxuqi>python
Python 3.7.7 (default, May  6 2020, 11:45:54) [MSC v.1916 64 bit (AMD64)] :: Anaconda, Inc. on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> import math
>>> torch.manual_seed(seed=20200910)
<torch._C.Generator object at 0x0000023D74B6D330>
>>>
>>> torch.exp(torch.tensor([0, math.log(2.)]))
tensor([1., 2.])
>>>
>>> math.log(2.)
0.6931471805599453
>>> input = torch.tensor([[0,1,2],[3,4,5]],dtype=torch.float)
>>> input
tensor([[0., 1., 2.],
        [3., 4., 5.]])
>>> torch.exp(input)
tensor([[  1.0000,   2.7183,   7.3891],
        [ 20.0855,  54.5981, 148.4132]])
>>>
>>>
>>> input = torch.randn(3,5)
>>> input
tensor([[ 0.2824, -0.3715,  0.9088, -1.7601, -0.1806],
        [ 2.0937,  1.0406, -1.7651,  1.1216,  0.8440],
        [ 0.1783,  0.6859, -1.5942, -0.2006, -0.4050]])
>>> torch.exp(input)
tensor([[1.3263, 0.6897, 2.4813, 0.1720, 0.8348],
        [8.1147, 2.8310, 0.1712, 3.0699, 2.3256],
        [1.1952, 1.9855, 0.2031, 0.8183, 0.6669]])
>>>
>>>
>>>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值