PyTorch张量的关闭自动梯度的三种方式

参考链接: PyTorch Tutorial 03 - Gradient Calculation With Autograd

三种方式:

# x.requires_grad_(False)
# x.detach()
# with torch.no_grad():
'''
prevent PyTorch from tracking history and calculating gradients
'''

import torch

torch.manual_seed(seed=20200910)
x = torch.randn(3, requires_grad=True)  
print(x)  # tensor([ 0.2824, -0.3715,  0.9088], requires_grad=True)

# x.requires_grad_(False)
# x.detach()
# with torch.no_grad():


# # 方式1
# x.requires_grad_(False)
# print(x)  # tensor([ 0.2824, -0.3715,  0.9088])

# # 方式2
# y = x.detach()
# print(y)  # tensor([ 0.2824, -0.3715,  0.9088])


# # 方式3
# with torch.no_grad():
#     y = x + 2
#     print(y)  # requires gradients         tensor([2.2824, 1.6285, 2.9088])
# z = x + 2
# print(z)  # don't  requires gradients      tensor([2.2824, 1.6285, 2.9088], grad_fn=<AddBackward0>)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值