1107. 魔板(bfs宽搜)

本文介绍了魔方创始人Rubik发明的二维魔板及其操作方式。魔板由8个格子组成,每个格子对应一个颜色。通过三种基本操作(A:交换上下行,B:右列插入左列,C:中央4格顺时针旋转)可以改变魔板状态。题目要求编程求解从基本状态到特定状态的最短操作序列。给出的示例展示了如何进行操作,并提供了一段C++代码实现该问题的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rubik 先生在发明了风靡全球的魔方之后,又发明了它的二维版本——魔板。

这是一张有 8 个大小相同的格子的魔板:

1 2 3 4
8 7 6 5
我们知道魔板的每一个方格都有一种颜色。

这 8 种颜色用前 8 个正整数来表示。

可以用颜色的序列来表示一种魔板状态,规定从魔板的左上角开始,沿顺时针方向依次取出整数,构成一个颜色序列。

对于上图的魔板状态,我们用序列 (1,2,3,4,5,6,7,8) 来表示,这是基本状态。

这里提供三种基本操作,分别用大写字母 A,B,C 来表示(可以通过这些操作改变魔板的状态):

A:交换上下两行;
B:将最右边的一列插入到最左边;
C:魔板中央对的4个数作顺时针旋转。

下面是对基本状态进行操作的示范:

A:

8 7 6 5
1 2 3 4
B:

4 1 2 3
5 8 7 6
C:

1 7 2 4
8 6 3 5
对于每种可能的状态,这三种基本操作都可以使用。

你要编程计算用最少的基本操作完成基本状态到特殊状态的转换,输出基本操作序列。

注意:数据保证一定有解。

输入格式
输入仅一行,包括 8 个整数,用空格分开,表示目标状态。

输出格式
输出文件的第一行包括一个整数,表示最短操作序列的长度。

如果操作序列的长度大于0,则在第二行输出字典序最小的操作序列。

数据范围
输入数据中的所有数字均为 1 到 8 之间的整数。

输入样例:
2 6 8 4 5 7 3 1
输出样例:
7
BCABCCB
#include<bits/stdc++.h>
using namespace std;
#define x first
#define y second
const int N = 1e2 + 10;
unordered_map<string,bool>vis;
unordered_map<string,pair<string,char> >path;
char a[N];
char g[2][4];
string End;
string op(string s,int type){
    for(int i = 0;i < 4;i ++){
        g[0][i] = s[i];
    }
    for(int i = 0;i < 4;i ++){
        g[1][i] = s[8 - i - 1];
    }
    if(type == 1){
        for(int i = 0;i < 4;i ++){
            swap(g[0][i],g[1][i]);
        }
    }else if(type == 2){
        char t = g[0][3];
        for(int i = 2;i >= 0;i --){
            g[0][i + 1] = g[0][i];
        }
        g[0][0] = t;
        t = g[1][3];
        for(int i = 2;i >= 0;i --){
            g[1][i + 1] = g[1][i];
        }
        g[1][0] = t;
    }else {
        int t = g[0][2];
        g[0][2] = g[0][1];
        g[0][1] = g[1][1];
        g[1][1] = g[1][2];
        g[1][2] = t;
    }
    string res = "";
    for(int i = 0;i < 4;i ++){
        res.append(1,g[0][i]);
    }
    for(int i = 3;i >= 0;i --){
        res.append(1,g[1][i]);
    }
    return res;
}
void bfs(string start){
    queue<string>q;
    q.push(start);
    vis[start] = true;
    path[start] = {"",'A'};
    while(!q.empty()){
        string t = q.front();
        q.pop();
        if(t == End)break;
        for(int i = 1;i <= 3;i ++){
            string tt = op(t,i);
            if(vis.find(tt) != vis.end())continue;
            vis[tt] = true;
            q.push(tt);
            path[tt] = {t,'A' + i - 1};
        }
    }
    vector<char>res;
    string x = End;
    while(path[x].x != ""){
        res.push_back(path[x].y);
        x = path[x].x;
    }
    reverse(res.begin(),res.end());
    cout<<res.size()<<endl;
    for(int i = 0;i < res.size();i ++){
        cout<<res[i];
    }
}
int main(){
    string start = "";
    End = "";
    for(int i = 0;i < 8;i ++){
        cin>>a[i];
        End.append(1,a[i]);
    }
    bfs("12345678");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值