【ACWing】1174. 受欢迎的牛

题目地址:

https://www.acwing.com/problem/content/1176/

每一头牛的愿望就是变成一头最受欢迎的牛。现在有 N N N头牛,编号从 1 1 1 N N N,给你 M M M对整数 ( A , B ) (A,B) (A,B),表示牛 A A A认为牛 B B B受欢迎。这种关系是具有传递性的,如果 A A A认为 B B B受欢迎, B B B认为 C C C受欢迎,那么牛 A A A也认为牛 C C C受欢迎。你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。

输入格式:
第一行两个数 N , M N,M N,M;接下来 M M M行,每行两个数 A , B A,B A,B,意思是 A A A认为 B B B是受欢迎的(给出的信息有可能重复,即有可能出现多个 A , B A,B A,B)。

输出格式:
输出被除自己之外的所有牛认为是受欢迎的牛的数量。

数据范围:
1 ≤ N ≤ 1 0 4 1≤N≤10^4 1N104
1 ≤ M ≤ 5 × 1 0 4 1≤M≤5×10^4 1M5×104

对于一个有向图,可以将其所有点按照强连通关系做等价类划分,每个等价类叫做一个强连通分量。如果将这些强连通分量都缩成一个点,那么就会得到一个拓扑图(如果有环,就会导致还有若干个强连通分量可以合并成一个更大的等价类,就矛盾了)。这道题的本质就是问,在将所有的强连通分量缩点完成之后,出度为 0 0 0的强连通分量是否唯一,如果不唯一的话,那么说明存在两个强连通分量互相之间不可达,则不存在“最受欢迎”的牛;如果唯一,则出度为 0 0 0的那个强连通分量里的牛都是最受欢迎的,则将这个强连通分量的点个数输出即可。

对于求强连通分量,通常用Tarjan算法。这个算法是基于DFS的。不妨设 G G G是一个有向无环图,可以从任意一点 u u u开始做DFS,并且开两个数组,一个数组叫dfn[],这个数组存的是在DFS的时候,每个点的访问的时间戳是什么(其时间戳就是其父亲的时间戳加 1 1 1。DFS起点的时间戳规定为 1 1 1),另一个数组叫low[],这个数组存的是每个点能到达的时间戳最小的点的时间戳(比如某个点能走到 u u u,那么这个点的low值就是 u u u的时间戳,即 1 1 1)。再开一个栈,这个栈会在每次搜到一个点的时候,就将这个点入栈,但是会在得到一个强连通分量的时候,将该强连通分量里的点出栈并标记。具体来说,当搜到 v v v这个点的时候,我们先更新dfn[v]low[v]成为访问到 v v v的时间戳,然后搜索 v v v的所有出边连的点,对于出边连的点 w w w有两种可能性,一种是,它之前没被搜过,则进去DFS搜,搜完之后, w w wdfnlow就都得到了,就可以用low[w]来更新low[v];如果之前搜过 w w w(其实这里的“搜过”的意思是 w w w在栈里,本质上回溯完的点是不会纳入考虑的,后面就会看到),那么就可以直接用dfn[w](或者用low[w]也行,原因是还没有回溯到 w w w点,所以 w w wdfnlow值实际上是相等的)来更新low[v]。把 v v v的所有邻接点遍历完之后,就要准备回溯了。如果此时发现dfn[v] = low[v],那么说明 v v v点就是其所在强连通分量的最高点,此时栈里从栈顶到 v v v都是 v v v所在的强连通分量里的点,可以逐个pop出来做标记和统计。可以看出只有在回溯到最高点的时候才会将某个点pop出来,并且pop点的时候就意味着找到了一个强连通分量。

注意,上面缩点之后,两个强连通分量之间的边数还是按照原图边数计算。这没什么特别的原因,只是为了计算方便,并且这样算不会影响答案。

代码如下:

#include <iostream>
#include <cstring>
using namespace std;

const int N = 10010, M = 50010;
int n, m;
int h[N], e[M], ne[M], idx;
// dfn[v]存v的访问时间戳,low[v]存v能访问到的点的时间戳最小值,timestamp表示当前时间戳
int dfn[N], low[N], timestamp;
int stk[N], top;
// in_stk[v]表示v是否在栈里
bool in_stk[N];
// id[v]表示点v在第几个强连通分量里,scc_cnt表示已经找到了多少个强连通分量,sz[i]表示第i个强连通分量里的点数
int id[N], scc_cnt, sz[N];
// dout[i]表示缩点后,第i个强连通分量的出度
int dout[N];

void add(int a, int b) {
    e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}

void tarjan(int u) {
    dfn[u] = low[u] = ++timestamp;
    stk[top++] = u, in_stk[u] = true;
    for (int i = h[u]; ~i; i = ne[i]) {
        int j = e[i];
        if (!dfn[j]) {
            tarjan(j);
            low[u] = min(low[u], low[j]);
        } else if (in_stk[j]) low[u] = min(low[u], dfn[j]);        
    }
    
    if (dfn[u] == low[u]) {
        scc_cnt++;
        int y;
        do {
            y = stk[--top];
            in_stk[y] = false;
            id[y] = scc_cnt;
            sz[scc_cnt]++;
        } while (y != u);
    }
}

int main() {
    scanf("%d%d", &n, &m);

    memset(h, -1, sizeof h);
    while (m--) {
        int a, b;
        scanf("%d%d", &a, &b);
        add(a, b);
    }

    for (int i = 1; i <= n; i++) 
        if (!dfn[i])
            tarjan(i);
        
    // 枚举所有的边
    for (int i = 1; i <= n; i++)
        for (int j = h[i]; ~j; j = ne[j]) {
            int k = e[j];
            int a = id[i], b = id[k];
            // 如果边的两个顶点所在强连通分量不同,则对出边计数
            if (a != b) dout[a]++;
        }
    
    // zeros存出度为0的强连通分量有多少个,res存答案
    int zeros = 0, res = 0;
    for (int i = 1; i <= scc_cnt; i++)
        if (!dout[i]) {
            zeros++;
            res = sz[i];
            // 如果出度为0的强连通分量不唯一,则答案为0
            if (zeros > 1) {
                res = 0;
                break;
            }
        }
    
    printf("%d\n", res);

    return 0;
}

时间复杂度 O ( N + M ) O(N+M) O(N+M),空间 O ( N ) O(N) O(N)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值