acwing-2240. 餐饮(最大流+拆点)

奶牛们在吃饭方面十分挑剔。

每头奶牛都有自己喜欢的食物和饮料,并且不会食用其他不喜欢的食物和饮料。

农夫约翰为他的奶牛们做了美味的饭菜,但他忘了对照他们的喜好来检查菜单。

虽然他可能无法令所有奶牛满意,但他想给尽可能多的奶牛提供一顿完整的用餐----既有食物可吃,也有饮料可喝。

农夫约翰一共烹制了 F 种食物,并提供了 D 种饮料。

约翰共有 N 头奶牛,其中第 i 头奶牛有 Fi 种喜欢的食物以及 Di 种喜欢的饮料。

约翰需要给每头奶牛分配一种食物和一种饮料,并使得有吃有喝的奶牛数量尽可能大。

每种食物或饮料都只有一份,所以只能分配给一头奶牛食用(即,一旦将第 2 种食物分配给了一头奶牛,就不能再分配给其他奶牛了)。

输入格式
第一行包含三个整数 N,F,D。

接下来 N 行,其中第 i 行描述第 i 头奶牛的饮食喜好,首先包含两个整数 Fi 和 Di,表示其喜欢的食物和饮料数量,然后包含 Fi 个整数表示其喜欢的食物的种类编号,最后包含 Di 个整数表示其喜欢的饮料的种类编号。

食物编号从 1 到 F,饮料编号从 1 到 D。

输出格式
输出一个整数,表示能够有吃有喝的奶牛的最大数量。

数据范围
1≤N,F,D≤100,
1≤Fi≤F,
1≤Di≤D

输入样例:
4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3
输出样例:
3

样例解释
一种使得三头奶牛满意的可行方法是:

奶牛 1:没饭。
奶牛 2:食物 2,饮料 2。
奶牛 3:食物 1,饮料 1。
奶牛 4:食物 3,饮料 3。

题解
当一个点只能被选择一次的时候,可以使用最大流中的拆点思路。

#include <iostream>
#include <cstring>
#include <algorithm>

using namespace std;

const int N = 410, M = 40610, INF = 1e8;

int n, F, D, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];

void add(int a, int b, int c)
{
    e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++ ;
    e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++ ;
}

bool bfs()
{
    int hh = 0, tt = 0;
    memset(d, -1, sizeof d);
    q[0] = S, d[S] = 0, cur[S] = h[S];
    while (hh <= tt)
    {
        int t = q[hh ++ ];
        for (int i = h[t]; ~i; i = ne[i])
        {
            int ver = e[i];
            if (d[ver] == -1 && f[i])
            {
                d[ver] = d[t] + 1;
                cur[ver] = h[ver];
                if (ver == T) return true;
                q[ ++ tt] = ver;
            }
        }
    }
    return false;
}

int find(int u, int limit)
{
    if (u == T) return limit;
    int flow = 0;
    for (int i = cur[u]; ~i && flow < limit; i = ne[i])
    {
        cur[u] = i;
        int ver = e[i];
        if (d[ver] == d[u] + 1 && f[i])
        {
            int t = find(ver, min(f[i], limit - flow));
            if (!t) d[ver] = -1;
            f[i] -= t, f[i ^ 1] += t, flow += t;
        }
    }
    return flow;
}

int dinic()
{
    int r = 0, flow;
    while (bfs()) while (flow = find(S, INF)) r += flow;
    return r;
}

int main()
{
    scanf("%d%d%d", &n, &F, &D);
    S = 0, T = n * 2 + F + D + 1;
    memset(h, -1, sizeof h);
    for (int i = 1; i <= F; i ++ ) add(S, n * 2 + i, 1);
    for (int i = 1; i <= D; i ++ ) add(n * 2 + F + i, T, 1);
    for (int i = 1; i <= n; i ++ )
    {
        add(i, n + i, 1);
        int a, b, t;
        scanf("%d%d", &a, &b);
        while (a -- )
        {
            scanf("%d", &t);
            add(n * 2 + t, i, 1);
        }
        while (b -- )
        {
            scanf("%d", &t);
            add(i + n, n * 2 + F + t, 1);
        }
    }
    printf("%d\n", dinic());
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值