【ACWing】2171. EK求最大流

题目地址:

https://www.acwing.com/problem/content/2173/

给定一个包含 n n n个点 m m m条边的有向图,并给定每条边的容量,边的容量非负。图中可能存在重边和自环。求从点 S S S到点 T T T的最大流。

输入格式:
第一行包含四个整数 n , m , S , T n,m,S,T n,m,S,T。接下来 m m m行,每行三个整数 u , v , c u,v,c u,v,c,表示从点 u u u到点 v v v存在一条有向边,容量为 c c c。点的编号从 1 1 1 n n n

输出格式:
输出点 S S S到点 T T T的最大流。如果从点 S S S无法到达点 T T T则输出 0 0 0

数据范围:
2 ≤ n ≤ 1000 2≤n≤1000 2n1000
1 ≤ m ≤ 10000 1≤m≤10000 1m10000
0 ≤ c ≤ 10000 0≤c≤10000 0c10000
S ≠ T S≠T S=T

EK算法(Edmond-Karp算法)求最大流是Ford-Fulkerson方法的一种实现。它依赖于两个定理,一个是,对于一个流网络 G G G上的网络流 f f f,其残留网络的一个可行流 f ′ f' f f + f ′ f+f' f+f也是个可行流;另一个是, f f f是最大流等价于其残留网络 G f G_f Gf不存在增广路。增广路的意思是,在 f f f的残留网络 G f G_f Gf里,从源点 s s s开始走,每一步都走一个边权为正的边(即容量大于 0 0 0的边),并走到了汇点 t t t的一条路径。所以要求最大流,本质上就是要在残留网络里找增广路,一旦找到了增广路,就找到了残留网络里的一条流量为正的可行流(即沿着增广路开一条流量为路径上最小容量的可行流即可),将这个可行流加到 f f f上即得到了一个更大的流。如此这般,直到残留网络里找不到增广路了为止。而找增广路,可以直接用BFS来做,这就是EK算法。具体代码步骤如下:
1、先建图。注意代码里只维护残留网络,不维护原网络。建图的时候用链式前向星来建。一开始建图的时候,直接正向边和反向边都建出来(这里正向边指的是与原流网络方向相同的边,反向边指的是与原流网络方向相反的边),并且按照先建正向边后建反向边的顺序来做,那么如果某条边的下标是idx,那么其相反边的下标就是idx ^ 1(因为正向边的下标是 0 , 2 , 4 , . . . 0,2,4,... 0,2,4,...,而反向边的下标是 1 , 3 , 5 1,3,5 1,3,5)。一开始建的残留网络实际上对应的原图可行流是 0 0 0流。所以正向边的容量就是原图容量,反向边的容量是 0 0 0
2、建好残留网络的图之后,原图的有个可行流是 0 0 0,我们用BFS找残留网络的一条增广路,同时在找的过程中,需要记录走到当前点为止,路径上的最小容量(这将是增广路对应的残留网络的可行流的流量),以及每个点的入边(之所以存边,是因为如果pre[v] = i,即点v的入边下标是i,那么这条边的反向边的下标就是i ^ 1,那么其前驱点的编号就是e[i ^ 1],这样就能巧妙地找到路径上每个点的前驱顶点。不这么做的话是很难找到前驱节点的);
3、找到一条增广路之后,在原图已经得到的可行流里累加这个增广路上的流 f ′ f' f,并更新残留网络。根据残留网络的定义,残留网络增广路上的正向边的容量都将减少 ∣ f ′ ∣ |f'| f,而残留网络增广路上的反向边的容量都将增加 ∣ f ′ ∣ |f'| f。从汇点 t t t出发,沿着pre数组一步步向前找到增广路的每条边,更新它们即可;
4、当找不到增广路的时候算法终止。累加出的流量即为最大流流量。

代码如下:

#include <iostream>
#include <cstring>
#include <queue>
using namespace std;

// 要开两倍的边,因为正向边和反向边都要开
const int N = 1010, M = 20010, INF = 1e8;
int n, m, S, T;
// 以下数组都是在维护残留网络。f[i]指下标为i的边的容量
int h[N], e[M], f[M], ne[M], idx;
// d[v]是指在bfs找增广路的时候,走到点v为止,所有边的最小边权(容量);
// pre[v]是指在bfs找增广路的时候,v的入边的下标
int d[N], pre[N];
bool st[N];

void add(int a, int b, int c) {
    e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;
    e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}

bool bfs() {
    queue<int> q;
    memset(st, 0, sizeof st);

    q.push(S), st[S] = true, d[S] = INF;
    while (q.size()) {
        int t = q.front(); q.pop();
        for (int i = h[t]; ~i; i = ne[i]) {
            int v = e[i];
            // 如果v没遍历过,并且走到v的这条边的容量为正,那么就向v走一步
            if (!st[v] && f[i]) {
                st[v] = true;
                d[v] = min(d[t], f[i]);
                pre[v] = i;
                if (v == T) return true;

                q.push(v);
            }
        }
    }

    return false;
}

int EK() {
    int res = 0;
    while (bfs()) {
        res += d[T];
        // 累加增广路的流之后,更新残留网络的每条边的容量
        for (int i = T; i != S; i = e[pre[i] ^ 1])
            f[pre[i]] -= d[T], f[pre[i] ^ 1] += d[T];
    }
    
    return res;
}

int main() {
    cin >> n >> m >> S >> T;
    memset(h, -1, sizeof h);

    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }
    
    cout << EK() << endl;

    return 0;
}

时间复杂度 O ( n m 2 ) O(nm^2) O(nm2),空间 O ( n ) O(n) O(n)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值