自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (5)
  • 收藏
  • 关注

原创 实时IP语音通信流程简介

该文章主要讲述了语音通信过程中声音是如何在通话双方之间进行传输和处理的。声音从通话的一方发出到被通话的另一方听到主要经过上图1所示流程。包括声音的采集、声音的信号处理、压缩编码、网络传输、解码、声音播放这几个模块,其中声音的信号处理主要是回声消除、降噪和自动增益,也就是俗称的“3A”处理。下面就分别介绍这几个模块。图1.音频的工作流程图一、声音采集1.1 声音的产生声音是由物体振动而产生的,而人声就是由我们的声带振动产生的。声音的三要素是频率、振幅和波形。频率代表音调的高低,振幅代表响度,波形

2022-03-11 17:14:28 8613 2

原创 基于RRNOISE降噪模型的VAD

一.原理agc2里面的rnn_vad是根据rnnoise降噪模型训练出来的具体可参考:https://blog.csdn.net/danteLiujie/article/details/1026329181.42个特征提取:BFCC(22),BFCC的一二阶导数(6*2),基音相关(6),基音周期(1),谱稳度(1)2.利用训练好的神经网络和提取的42个语音特征来计算vad;3.基音周期的估计方法:rnnoise所用的估计方法是基于lpc残差的基音周期估计方法4.BFCC:基于巴克刻度的倒谱;

2021-09-07 19:15:16 1155 5

原创 WEBRTC实现的基于GMM模型的VAD

一.高斯混合模型(GMM)参考链接:https://blog.csdn.net/lin_limin/article/details/810484111.为什么要使用混合模型?  高斯混合模型是单高斯模型的线性组合。在单个高斯模型不足以表示数据的真正分布情况时,则需要多个高斯模型融合成混合高斯模型。如下图的样本分布,单个高斯模型无法生成这样的样本。 单高斯模型(不符合高斯模型特征)

2021-09-07 17:57:25 1538

rrnoise训练总结

rrnoise训练总结

2022-02-25

webrtc降噪流程图

webrtc降噪流程图

2022-02-25

NLMS、RLS、PBFDAF、PNLMS

回声消除线性滤波器性能对比

2022-02-25

speex的mdf滤波器最优步长推导

speex的mdf滤波器最优步长推导

2022-02-24

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除