【算法】动态规划专题一 斐波那契数列模型 1-4

1.第N个泰波那契数

1.1 题目

题目链接
在这里插入图片描述

2. 代码

// 代码1:时间复杂度O(N) 空间复杂度O(N)
class Solution {
public:
    int tribonacci(int n) 
    {
        // 1. 判断边界条件
        if(n == 0) return 0;
        if(n == 1 || n == 2) return 1;
        // 2. 建立dp表
        vector<int> dp(n + 1);
        // 3. 初始化
        dp[0] = 0, dp[1] = dp[2] = 1;
        // 4. 填表 转移方程 dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3] 
        for(int i = 3; i <= n; i++)
            dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];
        // 5. 返回值
        return dp[n];  
    }
};
// 代码2:时间复杂度 O(N) 空间复杂度O(1)
class Solution {
public:
    int tribonacci(int n) 
    {
        // 1. 判断边界条件
        if(n == 0) return 0;
        if(n == 1 || n == 2) return 1;
        // 2. 建立dp表
        vector<int> dp(n + 1);
        // 3. 初始化
        int a = 0, d = 0, b = 1, c = 1;
        // 4. 填表 转移方程 d = c + a 
        for(int i = 3; i <= n; i++)
        {
            d = c + b + a;
            a = b; b = c; c = d;
        }
            
        // 5. 返回值
        return d;  
    }
};

2. 三步问题

2.1 题目

题目
在这里插入图片描述

2.2 思路

在这里插入图片描述

2.3 代码

class Solution {
public:
    int waysToStep(int n) {
        if (n == 1 || n == 2) return n;
        if(n == 3) return 4;
        vector<int> dp(n + 1);
        int MOD = 1e9 + 7;
        dp[1] = 1, dp[2] = 2, dp[3] = 4;
        for(int i = 4; i <= n; i++)
        {
            dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;
        }
        return dp[n];
    }
};

3.leetcode 746.使用最小花费爬楼梯

3.1 题目

题目链接
在这里插入图片描述
在这里插入图片描述

3.2 思路

在这里插入图片描述
在这里插入图片描述

3.3 代码

// 解法1 从前向后填表
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n+1);
        for(int i = 2; i <= n; i++)
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        return dp[n];
    }
};
// 解法二 从后向前填表
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n);
        dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];
        for(int i = n - 3; i >= 0; i--)
            dp[i] = cost[i] + min(dp[i + 1], dp[i + 2]);
        return min(dp[0], dp[1]);
    }
};

4.leetcode 91.解码方法

4.1 题目

题目链接
在这里插入图片描述
在这里插入图片描述

4.2 思路

在这里插入图片描述

4.3 代码

// 代码1 未优化初始化部分
class Solution {
public:
    int numDecodings(string s) {
        // 创建dp表
        // 初始化
        // 填表
        // 返回值
        int n = s.size();
        vector<int> dp(n);
        // 处理边界情况
        dp[0] = s[0] != '0';
        if(n == 1) return dp[0];
        if(s[0] != '0' && s[1] != '0') dp[1] += 1;
        int k1 = (s[0] - '0') * 10 + s[1] - '0'; // 前两个位置合起来表示的数
        //if(10 <= k1 <= 26) dp[1] += 1; // 这种写法在C++中是错误的
        if(k1 >=10 && k1 <= 26) dp[1] += 1;
        for(int i = 2; i < n; i++)
        {
            if(s[i] != '0') dp[i] += dp[i - 1];
            int k2 = (s[i - 1] - '0') * 10 + s[i] - '0'; 
            //if(10 <= k2 <= 26) dp[i] += dp[i - 2];
            if(k2 >= 10 && k2 <= 26) dp[i] += dp[i - 2];

        }
        return dp[n - 1];
    }
};
class Solution {
public:
    int numDecodings(string s) {
        // 优化

        int n = s.size();
        vector<int> dp(n + 1);
        // 处理边界情况
        dp[0] = 1; // 保证后面的填表是正确的
        dp[1] = s[1 - 1] != '0';
        for(int i = 2; i <= n; i++)
        {
            if(s[i - 1] != '0') dp[i] += dp[i - 1];
            int k = (s[i - 1 - 1] - '0') * 10 + s[i - 1] - '0'; 
            if(k >= 10 && k <= 26) dp[i] += dp[i - 2];

        }
        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值