AcWing789. 数的范围

题目来源:AcWing789. 数的范围

一、题目描述

给定一个按照升序排列的长度为 n n n 的整数数组,以及 q q q 个查询。

对于每个查询,返回一个元素 k k k 的起始位置和终止位置(位置从 0 0 0 开始计数)。

如果数组中不存在该元素,则返回 -1 -1

输入格式
第一行包含整数 n n n q q q,表示数组长度和询问个数。

第二行包含 n n n 个整数(均在 1 ∼ 10000 1∼10000 110000 范围内),表示完整数组。

接下来 q q q 行,每行包含一个整数 k k k,表示一个询问元素。

输出格式
q q q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。

如果数组中不存在该元素,则返回 -1 -1

数据范围
1 ≤ n ≤ 100000 1≤n≤100000 1n100000
1 ≤ q ≤ 10000 1≤q≤10000 1q10000
1 ≤ k ≤ 10000 1≤k≤10000 1k10000

输入样例:

6 3
1 2 2 3 3 4
3
4
5

输出样例:

3 4
5 5
-1 -1

二、二分原理

二分的本质并不是单调性,二分的本质是通过某一个性质可以将序列一分为二。有单调性一定可以二分,也就是说可以二分的题目不一定非要有单调性。

依据是否某一个性质,序列被一分为二。二分算法可以帮助我们找到满足/不满足这个性质的序列的边界,如下图,红色的区间代表不满足某个性质,绿色的区间代表满足某一个性质,通过二分算法可以找到这两个区间的边界。
二分的边界
因此,根据求不满足性质的序列的边界和满足性质的序列的边界这两个任务,二分算法也就有了两个不同的模板

求不满足性质序列的边界位置

(1)计算 m i d mid mid m i d = l + r > > 1 ; mid = l + r >> 1; mid=l+r>>1
(2)如果 m i d mid mid 在红色区间内,则不满足性质的边界肯定在 [ m i d , r ] [mid, r] [mid,r] 区间中,更新方式 l = m i d ; l = mid; l=mid;
(3)如果 m i d mid mid 在绿色区间内,则说明不满足性质的边界肯定在 [ l , m i d − 1 ] [l, mid - 1] [l,mid1] 中,更新方式 r = m i d − 1 ; r = mid - 1; r=mid1;
注意:如果说更新方式是 l = m i d l = mid l=mid,则在 m i d mid mid 计算时模板加上 1 1 1,即 mid = l + r >> 1 变成 m i d = l + r + 1 > > 1 mid = l + r + 1 >> 1 mid=l+r+1>>1,需要强记

下面解释一下mid为什么要加1:
假设当 l = r − 1 l = r - 1 l=r1 时(即 l , r l, r l,r 相邻时),如果不加 1 1 1,则 m i d = [ l + ( l + 1 ) ] 2 = l mid = \frac{[l + (l + 1)]} { 2} = l mid=2[l+(l+1)]=l, 如果说 m i d mid mid 仍然在红色区间中,则更新时 l = m i d = l l = mid = l l=mid=l,会陷入死循环;如果加 1 1 1 处理, m i d = [ ( r − 1 ) + r + 1 ] 2 = r mid = \frac{[(r - 1) + r + 1]} {2} = r mid=2[(r1)+r+1]=r,如果 m i d mid mid 仍然在红色区间中, 更新时 l = m i d = r l = mid = r l=mid=r,新区间变成 [ r , r ] [r, r] [r,r],则不会出现问题。

模板
int l = 0, r = n - 1;
while (l < r)
{
	int mid = l + r + 1 >> 1;
	if (not_satisfied(mid)) l = mid;	// 写到这里,发现l = mid,则在mid计算中补1
	else r = mid - 1;
}

求满足性质序列的边界位置

(1)计算 m i d mid mid m i d = l + r > > 1 ; mid = l + r >> 1; mid=l+r>>1
(2)如果 m i d mid mid 在绿色区间中,说明满足性质的边界肯定在 [ l , m i d ] [l, mid] [l,mid] 区间中,更新方式 r = m i d ; r = mid; r=mid;
(3)如果 m i d mid mid 在红色区间中,说明满足性质的边界肯定在 [ m i d + 1 , r ] [mid + 1, r] [mid+1,r] 区间中,更新方式 l = m i d + 1 ; l = mid + 1; l=mid+1;

模板
int l = 0, r = n - 1;
while (l < r)
{
	int mid = l + r >> 1;
	if (satisfied(mid)) r = mid;
	else l = mid + 1;
}

实际做题时如何考虑

(1)不需要想的很复杂,直接根据题目要求的性质,任意设计一个 c h e c k ( ) check() check() 函数,并写出区间更新的方式;
(2)如果发现其中存在 l = m i d l = mid l=mid 这个更新方式,则修改 mid = l + r >> 1 m i d = l + r + 1 > > 1 ; mid = l + r + 1 >> 1; mid=l+r+1>>1
(3)如果发现是 r = m i d r = mid r=mid 这个更新方式,则不需要修改 m i d mid mid 的计算方式。

三、代码

#include <iostream>
using namespace std;

const int N = 1e5 + 10;
int a[N], n, m;

// 寻找左端点
int findL(int x)
{
    int l = 0, r = n - 1;
    // 这里的任务定义为:寻找不小于x的值的左端点
    while (l < r)
    {
        int mid = l + r >> 1;
        if (a[mid] >= x) r = mid;
        else l = mid + 1;
    }
    if (a[l] == x) return l;    // 判断是否有解
    return -1;
}

// 寻找右端点
int findR(int x)
{
    int l = 0, r = n - 1;
    // 这里的任务定义为:寻找不大于x的右端点
    while (l < r)
    {
        int mid = l + r + 1 >> 1;
        if (a[mid] <= x) l = mid;
        else r = mid - 1;
    }
    return l;   // 因为既然能执行到findR,说明x肯定存在,就不用担心找不到。
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 0; i < n; i++) scanf("%d", &a[i]);
    
    while (m--)
    {
        int x;
        scanf("%d", &x);
        
        int l = findL(x), r;
        if (l == -1) puts("-1 -1");
        else
        {
            r = findR(x);
            printf("%d %d\n", l, r);
        }
    }
    
    return 0;
}
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
题目链接:https://www.acwing.com/problem/content/4948/ 题目描述: 给定一棵有 $n$ 个结点的树,结点从 $1$ 到 $n$ 编号,每个结点都有一个权值 $w_i$,现在有 $m$ 次操作,每次操作是将树中编号为 $x$ 的结点的权值加上 $y$,然后询问一些节点是否为叶子节点,如果是输出 $1$,否则输出 $0$。 输入格式: 第一行包含两个整 $n$ 和 $m$。 第二行包含 $n$ 个整,其中第 $i$ 个整表示结点 $i$ 的初始权值 $w_i$。 接下来 $n-1$ 行,每行包含两个整 $a$ 和 $b$,表示点 $a$ 和点 $b$ 之间有一条无向边。 接下来 $m$ 行,每行描述一次操作,格式为三个整 $t,x,y$。其中 $t$ 表示操作类型,$t=1$ 时表示将编号为 $x$ 的结点的权值加上 $y$,$t=2$ 时表示询问编号为 $x$ 的结点是否为叶子节点。 输出格式: 对于每个操作 $t=2$,输出一个结果,表示询问的结点是否为叶子节点。 范围: $1≤n,m≤10^5$, $1≤w_i,y≤10^9$ 样例: 输入: 5 5 1 2 3 4 5 1 2 1 3 3 4 3 5 2 3 0 1 3 100 2 3 0 1 1 100 2 3 0 输出: 1 0 0 算法1: 暴力dfs,每次都重新遍历整棵树,时间复杂度 $O(nm)$ 时间复杂度: 最坏情况下,每次操作都要遍历整棵树,时间复杂度 $O(nm)$,无法通过此题。 算法2: 用一个 vector<int> sons[n+5] 来存储每个点的所有子节点,这样可以用 $O(n)$ 预处理出每个点的度 $deg_i$,如果 $deg_i=0$,则 $i$ 是叶子节点,否则不是。 对于每个操作,只需要更新叶子节点关系的变化就可以了。如果某个节点的度从 $1$ 变成 $0$,则该节点变成了叶子节点;如果某个节点的度从 $0$ 变成 $1$,则该节点不再是叶子节点。 时间复杂度: 每次操作的时间复杂度是 $O(1)$,总时间复杂度 $O(m)$,可以通过此题。 C++ 代码: (算法2)

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁头娃撞碎南墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值