AcWing 838. 堆排序

题目来源:AcWing 838. 堆排序

一、题目描述

输入一个长度为 n n n 的整数数列,从小到大输出前 m m m 小的数。

输入格式
第一行包含整数 n n n m m m

第二行包含 n n n 个整数,表示整数数列。

输出格式
共一行,包含 m m m 个整数,表示整数数列中前 m m m 小的数。

数据范围
1 ≤ m ≤ n ≤ 1 0 5 , 1≤m≤n≤10^5, 1mn105
1 ≤ 1≤ 1数列中元素 ≤ 1 0 9 ≤10^9 109

输入样例:

5 3
4 5 1 3 2

输出样例:

1 2 3

二、堆

堆是一棵完全二叉树,其有如下操作:

  1. 插入一个数
  2. 求堆中最值
  3. 删除堆顶最值
  4. 删除任意一个元素
  5. 修改任意一个元素

堆的递归定义:以小根堆为例,每一个结点都 ≤ 左右子树的根结点。

堆的存储:因为堆是建立在完全二叉树上的,凡是涉及完全二叉树皆可以使用顺序存储
假设堆存储在数组 h h h 中,那么根结点始终为 h [ 1 ] h[1] h[1],若某个结点的下标为 i i i,则其左儿子的下标为 2 i 2i 2i,右儿子的下标为 2 i + 1 2i + 1 2i+1

堆的向下调整:down()操作
如果对某个结点 u u u 执行down(u)操作,则需要将该结点的值和其左右儿子的值对比,与其中的最小值的结点进行交换,然后递归执行上述操作,该操作时间复杂度和树的高度成正比,因此为 O ( l o g n ) O(logn) O(logn)

void down(int u)
{
	int t = u;
	if (u * 2 <= n && h[t] > h[u * 2]) t = u * 2;
	if (u * 2 + 1 <= n && h[t] > h[u * 2 + 1]) t = u * 2 + 1;
	if (t != u)
	{
		swap(h[t], h[u]);
		down(t);
	}
}

堆的向上调整:up(u)操作
如果对某个结点 u u u 执行up(u)操作,则需要将该结点的值和其父结点的值对比,如果比其父结点的值小,则与父结点交换,然后递归执行上述操作,该操作时间复杂度和树的高度成正比,因此为 O ( l o g n ) O(logn) O(logn)

void up(int u)
{
	while (u / 2 && h[u] < h[u / 2]) 
	{
		swap(h[u], h[u / 2]);
		u >>= 1;
	}
}

堆的插入操作
在整个堆的最后一个位置插入 x x x,即 h[++n] = x,然后将这个数向上调整 up(n),时间复杂度 O ( l o g n ) O(logn) O(logn)

void push(int x)
{
	h[++n] = x;
	up(x);
}

求堆的最值
堆顶元素一定是堆集合的最值:h[1],时间复杂度 O ( 1 ) O(1) O(1)

int top()
{
	return h[1];
}

删除堆顶最值
将整个堆中的最后一个元素覆盖堆顶元素h[1] = h[n],然后令n--,表示删除最后一个元素,然后让堆顶元素向下调整down(1),该操作时间复杂度 O ( l o g n ) O(logn) O(logn)
为什么要这样做呢?因为在堆中,直接删除堆顶元素比较困难,然而删除最后一个元素却很简单

void pop()
{
	h[1] = h[n--];
	down(1);
}

删除任意位置上的一个元素
将整个堆中的最后一个元素覆盖 h h h 中下标为 k k k 位置的元素,即h[k] = h[n],然后令n--,表示删除最后一个元素。此时需要分类讨论,如果 h [ k ] h[k] h[k] 相对变大了,就需要down(k);如果 h [ k ] h[k] h[k] 相对变小了,就需要up(k)。其实,我们可以偷懒,不分类讨论,直接down(k), up(k),这两个中最多只会执行一个,该操作时间复杂度 O ( l o g n ) O(logn) O(logn)

void remove(int k)
{
	h[k] = h[n--];
	down(k), up(k);
}

修改任意位置上的一个元素
修改操作与删除某个位置上的元素类似,直接在 h [ k ] h[k] h[k] 上修改,然后down(k), up(k)即可。

void update(int k, int x)
{
	h[k] = x;
	down(k), up(k);
}

如何快速的将一个数组建成堆
我们当然可以通过一个一个往堆中插入的方式插入数组元素,但是这样做的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn),有一个快速的数组建堆方案是,从 h h h 序列的 n 2 \frac{n}{2} 2n 处向 1 1 1 逐个执行 d o w n ( ) down() down() 操作即可,该操作时间复杂度可以优化到 O ( n ) O(n) O(n),示意图如下。
在这里插入图片描述

三、代码

#include <iostream>
#include <cstring>
using namespace std;

const int N = 100010;
int h[N];
int n, m;

void down(int u)
{
    int t = u;
    if (u * 2 <= n && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= n && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        swap(h[u], h[t]);
        down(t);
    }
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++) cin >> h[i];
    for (int i = n / 2; i; i--) down(i);
    
    while (m--)
    {
        cout << h[1] << ' ';
        h[1] = h[n--];
        down(1);
    }
    
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁头娃撞碎南墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值