DFS的三大类型

深度优先搜索可以解决指数型组合型排列型等问题,很多小伙伴拿到DFS的问题时不知道该如何处理,这篇文章主要是通过每个类型最具有代表性、最简单的题目来帮助同学们对DFS的写法有更深的理解。

一. DFS实现指数型枚举(求序列的所有子集)

题目来源:【AcWing 92. 递归实现指数型枚举】

1. 题目描述

1 ∼ n 1∼n 1n n n n 个整数中随机选取任意多个,输出所有可能的选择方案。

输入格式
输入一个整数 n n n

输出格式
每行输出一种方案。

同一行内的数必须升序排列,相邻两个数用恰好 1 1 1 个空格隔开。

对于没有选任何数的方案,输出空行(空集)。

本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。

数据范围
1 ≤ n ≤ 15 1≤n≤15 1n15

输入样例:

3

输出样例:


3
2
2 3
1
1 3
1 2
1 2 3

2. 分析思路

所有的深搜问题都可以对应到一棵递归搜索树,我们必须要考虑一个枚举的顺序,使得能够不漏掉任何一个方案,一种比较好的搜索顺序如下图。
在这里插入图片描述
我们可以发现,这种搜索树就是第 1 1 1 层考虑第一个数,第 2 2 2 层考虑第二个数,以此类推。。。

这个问题当然很简单,看起来只是一个不选的问题,体现出来是一个二叉树。但对于一个更复杂的问题,我们也可能把它转化成一个多叉树,每一叉代表一种递归的分支。

如果我们将这一棵递归搜索树转化成代码时,我们需要注意这几个参数

  1. 当前看到第几个数(对应于树中是层数),记作 u u u
  2. 我们要记录前面的数是否被选,需要一个 b o o l bool bool 数组

3. 代码模板

#include <iostream>
#include <cstring>
using namespace std;

const int N = 20;

bool st[N];
int n;

void dfs(int u)
{
   
    // 到达叶子结点
    if (u > n)
    {
   
        for (int i = 1; i <= n; i ++ )
            if (st[i]) printf("%d ", i);
        puts("");
        return;
    }
    
    // 在每个结点处依次枚举每个分支
    // "选" 分支
    st[u] = true;
    dfs(u + 1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

铁头娃撞碎南墙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值