深度优先搜索可以解决指数型、组合型、排列型等问题,很多小伙伴拿到DFS的问题时不知道该如何处理,这篇文章主要是通过每个类型最具有代表性、最简单的题目来帮助同学们对DFS的写法有更深的理解。
一. DFS实现指数型枚举(求序列的所有子集)
1. 题目描述
从 1 ∼ n 1∼n 1∼n 这 n n n 个整数中随机选取任意多个,输出所有可能的选择方案。
输入格式
输入一个整数 n n n。
输出格式
每行输出一种方案。
同一行内的数必须升序排列,相邻两个数用恰好 1 1 1 个空格隔开。
对于没有选任何数的方案,输出空行(空集)。
本题有自定义校验器(SPJ),各行(不同方案)之间的顺序任意。
数据范围
1 ≤ n ≤ 15 1≤n≤15 1≤n≤15
输入样例:
3
输出样例:
3
2
2 3
1
1 3
1 2
1 2 3
2. 分析思路
所有的深搜问题都可以对应到一棵递归搜索树,我们必须要考虑一个枚举的顺序,使得能够不漏掉任何一个方案,一种比较好的搜索顺序如下图。
我们可以发现,这种搜索树就是第 1 1 1 层考虑第一个数,第 2 2 2 层考虑第二个数,以此类推。。。
这个问题当然很简单,看起来只是一个选和不选的问题,体现出来是一个二叉树。但对于一个更复杂的问题,我们也可能把它转化成一个多叉树,每一叉代表一种递归的分支。
如果我们将这一棵递归搜索树转化成代码时,我们需要注意这几个参数:
- 当前看到第几个数(对应于树中是层数),记作 u u u
- 我们要记录前面的数是否被选,需要一个 b o o l bool bool 数组
3. 代码模板
#include <iostream>
#include <cstring>
using namespace std;
const int N = 20;
bool st[N];
int n;
void dfs(int u)
{
// 到达叶子结点
if (u > n)
{
for (int i = 1; i <= n; i ++ )
if (st[i]) printf("%d ", i);
puts("");
return;
}
// 在每个结点处依次枚举每个分支
// "选" 分支
st[u] = true;
dfs(u + 1