基于科大讯飞大模型Spark 4.0 Ultar 的微信聊天机器人搭建教程---零基础搭建最详细图文版!!!

1、软件的下载及部署

搭建该微信聊天机器人,主要依赖的编程语言为python,故需要搭建python的开发环境,主要包含python解释器的下载与安装以及编译器pycharm的下载与安装

1.1 python解释器的下载与安装

python解释器官网:https://www.python.org/

也可以直接讲鼠标移动到downloads上,点击下载。这样下载的是python的最新版本。目前最兼容当前模型的python版本为3.8版本,所以我们下载3.8版本即可

在python官网,点击downloads,进入下载界面,向下滑动界面,找到3.10版本

点击下载即可

下载后点击安装即可

更改安装路径,比如当前我将python装到D盘的python3.8下

注意:这个安装路径,一定是你可以找到的路径

如果出现这个,直接点击关闭即可

安装完成后,打开终端查看是 如下信息表示安装成功

1.2 pycharm的下载与安装

pycharm官网:https://www.jetbrains.com.cn/pycharm/

点击下载,进入下载界面,向下滑动界面。下载社区版pycharm即可

<
### 使用Python创建微信聊天机器人教程 #### 准备工作 为了构建一个能与微信互动的聊天机器人,需先安装必要的库。`itchat`是一个用于接收和发送消息的强大工具[^1]。 ```bash pip install itchat ``` #### 登录并保持会话 通过扫描二维码登录到微信账号,并维持在线状态以便持续监听新消息: ```python import itchat itchat.auto_login(hotReload=True) ``` 这段代码允许用户通过手机扫码完成验证过程,而参数`hotReload=True`可使程序在一定时间内无需重复扫码即可重新连接。 #### 接收消息处理函数定义 当接收到好友发来的信息时触发特定行为;这里简单地实现了回显功能作为示范: ```python @itchat.msg_register(itchat.content.TEXT) def text_reply(msg): return msg.text ``` 此部分利用装饰器注册了一个文本类型的消息处理器,每当有新的文字消息到来就会调用该方法返回相同的内容给对方。 #### 集成第三方API增强智能化水平 对于更复杂的对话场景,则可以考虑引入外部服务来提升响应质量。例如借助图灵机器人的接口实现自然语言理解能力: ```python import requests import json def robot_tuling(text): url = "http://www.tuling123.com/openapi/api" api_key = "your key" # 用户应自行申请有效的 API Key payload = { "key": api_key, "info": text, } try: response = requests.post(url, data=json.dumps(payload)) result = response.json() if 'text' not in result or result.get('code') != 100000: raise ValueError("Invalid response from Tuling.") reply_message = result['text'] if "当天请求次数已用完" in reply_message: return "主人不在所以我智商为0了,尝试下回复(唯美)随机获取励志唯美语句" return reply_message except Exception as e: print(f"Tuling request failed: {str(e)}") return None ``` 上述代码片段展示了如何封装对图灵开放平台API 的调用逻辑,在遇到错误情况时提供友好的提示信息而不是直接抛出异常[^2]。 #### 启动机器人运行循环 后一步就是启动整个应用程序进入事件驱动模式等待来自用户的输入: ```python if __name__ == '__main__': @itchat.msg_register(['Text']) def handle_msg(msg): user_input = msg['Content'].strip() bot_response = robot_tuling(user_input) if bot_response is not None: itchat.send(bot_response, toUserName=msg['FromUserName']) itchat.run() ``` 这使得每次接收到的新消息都会被传递给之前定义过的 `robot_tuling()` 方法去处理,并将得到的结果反馈回去。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值