学习笔记
通过构建情感分类器训练词向量
使用IMDB数据集,构建一个用于计算评论的情感是正面、负面还是未知的情感分类器,在构建过程中,将为IMDB数据集中存在的词进行词向量的训练。
训练情感分类器包含以下步骤:
- 下载IMDB数据,并分词
- 建立词表
- 生成向量的批数据
- 使用词向量创建网络模型
- 训练模型
import torch
from torchtext import data
from torchtext import datasets
from torch import nn, optim
from torch.nn import functional as F
from torchtext.vocab import GloVe
'''
torchtext.data和torchtext.datasets
torchtext.data可以处理数据
torchtext.datasets可以下载数据集
下载数据,并对文本分词
'''
# Field类用来定义数据如何读取和分词
# 对所有文本小写并分词,最大长度为20
TEXT=data.Field(lower=True,batch_first=True,fix_length=20)
LABEL=data.Field(sequential=False)
train,test=datasets.IMDB.splits(TEXT,LABEL)
# train.fields包含一个字典,其中TEXT是键,值是LABEL
'''
构建词表
'''
#创建train对象,并让它使用维度为300的预训练词向量来初始化向量。
TEXT.build_vocab(train,vectors=GloVe(name='6B',di