2020-12-25

这篇博客记录了如何使用Python构建一个情感分类器,通过IMDB数据集进行训练,包括下载数据、分词、建立词表、生成向量批数据和创建网络模型的步骤。
摘要由CSDN通过智能技术生成

学习笔记

通过构建情感分类器训练词向量

使用IMDB数据集,构建一个用于计算评论的情感是正面、负面还是未知的情感分类器,在构建过程中,将为IMDB数据集中存在的词进行词向量的训练。

训练情感分类器包含以下步骤:

  • 下载IMDB数据,并分词
  • 建立词表
  • 生成向量的批数据
  • 使用词向量创建网络模型
  • 训练模型
import torch
from torchtext import data
from torchtext import datasets
from torch import nn, optim
from torch.nn import functional as F
from torchtext.vocab import GloVe

'''
torchtext.data和torchtext.datasets
torchtext.data可以处理数据
torchtext.datasets可以下载数据集


下载数据,并对文本分词
'''
# Field类用来定义数据如何读取和分词
# 对所有文本小写并分词,最大长度为20
TEXT=data.Field(lower=True,batch_first=True,fix_length=20)
LABEL=data.Field(sequential=False)

train,test=datasets.IMDB.splits(TEXT,LABEL)
# train.fields包含一个字典,其中TEXT是键,值是LABEL

'''
构建词表
'''
#创建train对象,并让它使用维度为300的预训练词向量来初始化向量。
TEXT.build_vocab(train,vectors=GloVe(name='6B',di
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值