计算CNN的输出

怎么根据cnn网络的参数和输入图片大小,计算一个cnn网络的输出呢,下面来说明一下
现在做如下假设

  • n:表示图像尺寸,比如图像尺寸为n*n*3
  • f:表示卷积核尺寸,比如卷积核尺寸为f*f,可以用filter表示卷积核
  • s:表示步进,卷积核一次移动多少个像素
  • p:表示填充数目,表示一边填充p列像素,2p表示左右各填充p列像素,同样,在行上表示一边填充p行像素,2p表示上下各填充p行像素
    于是我们就可以得到如下公式
    不填充情况下 步进为1
    输出矩阵形状为:(n-f+1)(n-f+1)
    比如:n=10, f=3 输出为(10-3+1)=8
    不填充情况下 步进大于1
    输出矩阵形状为:((n-f)/s+1)
    ((n-f)/s+1)
    比如n=10, f=3 s=2输出为(10-3)/2+1)=4
    填充 步进为1
    如果在不填充原图的情况下,没经过一次cnn,图像就会缩小,可以通过向图像周围填充0,来扩大原图的尺寸,使输入==输出
    怎么计算填充呢,如下公式,
    输出为(n+2p-f+1)*(n+2p-f+1)
    (n+2p-f+1)=n -->p=(f-1)/2
    填充 步进为>1
    输出为((n+2p-f)/s +1)

公式总结

卷积层中的参数数量

卷积层中的参数数量取决于 filters、kernel_size 和 input_shape 的值。我们定义几个变量:

  • K - 卷积层中的过滤器数量
  • F - 卷积过滤器的高度和宽度
  • D_in - 上一层级的深度

注意:K = filters,F = kernel_size。类似地,D_in 是 input_shape 元组中的最后一个值。

因为每个过滤器有 F*F*D_in 个权重,卷积层由 K 个过滤器组成,因此卷积层中的权重总数是 K*F*F*D_in。因为每个过滤器有 1 个偏差项,卷积层有 K 个偏差。因此,卷积层中的参数数量是 K*F*F*D_in + K。

卷积层的形状,实际使用中的公式

卷积层的形状取决于 kernel_size、input_shape、padding 和 stride 的值。我们定义几个变量:

  • K - 卷积层中的过滤器数量
  • F - 卷积过滤器的高度和宽度
  • H_in - 上一层级的高度
  • W_in - 上一层级的宽度
  • S-卷积核一次移动像素个数

注意:K = filters、F = kernel_size,以及S = stride。类似地,H_in 和 W_in 分别是 input_shape 元组的第一个和第二个值。

卷积层的深度始终为过滤器数量 K。
如果 padding = ‘same’,那么卷积层的空间维度如下:

  • height = ceil(float(H_in) / float(S))
  • width = ceil(float(W_in) / float(S))

如果 padding = ‘valid’,那么卷积层的空间维度如下:

  • height = ceil(float(H_in - F + 1) / float(S))
  • width = ceil(float(W_in - F + 1) / float(S))
np.ceil(4.3)
# 输出5.0
np.ceil(4.6)
# 输出5.0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值