部分数据处理代码

博客介绍了处理股票数据的过程,包括从tcs_stock_2018-05-26.csv中选取特定特征进行归一化,数据切分为训练和测试集,以及使用CNN模型进行构建和训练。展示了模型训练的损失函数曲线和预测误差图像。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

部分数据处理代码

数据集为tcs_stock_2018-05-26.csv,包含1331条记录,时间日期从2013-01-01—2018-05-18,包含当日股票的最高值,最低值,开盘价格等数据特征。

在这里插入图片描述

最终只保留开盘价,最高价,最低价和当日闭市价格,即:Open,High,Low,Close这四个特征,并统一进行归一化处理:
在这里插入图片描述

数据切分

time_step 设置为6,将数据集切分为训练数据集和测试数据集,并转换为array格式。

在这里插入图片描述
取出其中一个sample的数据查看:

 # 举例:用前5行数据,预测第6行的最后一个数据
# train
 #[[[0.126695 0.12679  0.126    0.126415]
#   [0.1267   0.12724  0.125555 0.12633 ]
#   [0.1265   0.1284   0.125995 0.12806 ]
#   [0.1285   0.1301   0.12809  0.12992 ]
#   [0.13     0.1304   0.129025 0.129485]
#   [0.1295   0.13043  0.12943  0.130025]]
 
# x_train
# [[[0.126695 0.12679  0.126    0.126415]
#   [0.1267   0.12724  0.125555 0.12633 ]
#   [0.1265   0.1284   0.125995 0.12806 ]
#   [0.1285   0.1301   0.12809  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值