基于深度学习的雷达辐射源识别技术研究
1 摘要
时频分析(参考博文)作为处理非平稳信号的有力工具,能够将一维的时域信号映射为时间和频率的联合分布。通过将信号转化为二维时频图像,从图像识别的角度完成辐射源信号的识别。而深度学习模型能够对信号或者图像进行自动的特征提取,省去了人工提取的步骤 ,逐渐成为雷达辐射源信号脉内特征提取的一种新方法。本文应用深度学习中的卷积神经网络来实现雷达辐射源信号的识别,主要工作如下:
- 在研究信号时频分析的基础上,提出了基于时频图像和卷积神经网络的雷达辐射源信号识别方法 。该方法首先通过时频变换将一维的雷达信号转化为二维的时频图像, 然后利用数字图像处理技术对时频图像进行预处理,最后采用卷积神经网络实现信号的分类识别。对不同调制方式和相同调制方式的两种数据集进行了仿真实验。
- 提出了基于一维卷积神经网络的辐射源信号识别方法 。该方法只需对原始信号做简单的预处理,从而省去时频变换耗费的大量时间。文中对不同调制方 和相同调制方式的两种数据集进行了仿真实验 。
**
2 雷达信号建模与仿真
侦察机接收到的信号模型为:
x (t) 表示接收到的雷达信号,s (t)为理想信号,n(t)是噪声,一般为高斯白噪声,T 则是脉冲宽度。
2.1 常规脉冲信号
常规脉冲信号载频固定,且没有对频率和相位进行调制,其信号模型为:
其中A 信号的幅度,fc 为载频,T 为脉冲宽度,φ为初相,n(t)为噪声,信号的瞬时频率恒定为一个常数,下图表明其频率不变性。
2.2 线性调频信号
线性调频信号(LFM)信号频率随时间呈现线性变化,具有良好的速度分辨率和距离分辨率,其信号模型为:
其中A为信号幅度,T 为脉冲宽度,n(t)为干扰噪声,φ表示信号的相位,f(t)是一种非线性函数,信号的瞬时频率是一条随时间呈非线性变化的曲线。