信号处理和深度学习
文章平均质量分 62
隔壁王童鞋
集成电路小菜鸡
展开
-
部分数据处理代码
部分数据处理代码数据集为tcs_stock_2018-05-26.csv,包含1331条记录,时间日期从2013-01-01—2018-05-18,包含当日股票的最高值,最低值,开盘价格等数据特征。最终只保留开盘价,最高价,最低价和当日闭市价格,即:Open,High,Low,Close这四个特征,并统一进行归一化处理:数据切分time_step 设置为6,将数据集切分为训练数据集和测试数据集,并转换为array格式。取出其中一个sample的数据查看: # 举例:用前5行数据,预测第6行原创 2021-06-02 15:41:36 · 471 阅读 · 0 评论 -
时频分析
博文1(具体描述了短时傅里叶变换):点这里原创 2020-08-31 17:40:24 · 1439 阅读 · 0 评论 -
混沌序列中提取信息
一、信号分析方法如何更有效的提取有用信息?常用的分析方法有:时域统计量分析法常用的时域统计指标有:均值、方差、有效值、峰值、峰峰值、峭度、波形指标、裕度指标、脉冲指标等。方便提取,计算简单的特点,在一些简易诊断中得到广泛应用。频域分析法频谱分析的方法,如幅值谱分析、功率谱分析、倒谱分析和包络解调分析等。时频分析法许多适合处理非平稳信号的时频分析方法被提出并得到了广泛应用,如短时傅里叶变换、Gabor 变换、小波分析、自适应时频分析方法等。经验模态分解(Empirical Mode Decomp原创 2020-08-23 16:56:27 · 770 阅读 · 1 评论 -
深度学习在识别雷达信号调制类别中的应用
相关博文:基于深度学习的雷达辐射源识别技术研究基于扩张残差网络的雷达辐射源信号识别1 Convolutional Neural Network-Based RadarJamming Signal Classification With Sufficientand Limited Samples(基于卷积神经网络的有限样本雷达干扰信号分类)2020.4.27发表主要贡献:1D-CNN的雷达干扰信号分类模型;解决样本不足的问题:改进的Siamese-CNN(S-CNN)雷达干扰信号;12种雷达原创 2020-08-22 11:40:20 · 6948 阅读 · 31 评论 -
基于扩张残差网络的雷达辐射源信号识别
基于扩张残差网络的雷达辐射源信号识别参考上一篇博文1 创新之处:16类雷达信号(复杂多类):单载频、LFM、NLFM、相位编码(BPSK、Frank、P1-P4及T1~T4)、频率编码Costas和混合调制(频率编码与LFM混合调制FSK +LFM、频率编码与相位编码混合调制FSK+BPSK)使用残差网络,ResNet顶层的普通卷积替换为扩张卷积构成扩张残差网络。2 目的: 改善低信噪比条件下类LFM信号的识别性能。3 时频分析方法: CWD(采用指数加权核函数Cohen类时频分布,对不同时原创 2020-08-21 17:18:29 · 1470 阅读 · 2 评论 -
基于深度学习的雷达辐射源识别技术研究
基于深度学习的雷达辐射源识别技术研究1 摘要时频分析(参考博文)作为处理非平稳信号的有力工具,能够将一维的时域信号映射为时间和频率的联合分布。通过将信号转化为二维时频图像,从图像识别的角度完成辐射源信号的识别。而深度学习模型能够对信号或者图像进行自动的特征提取,省去了人工提取的步骤 ,逐渐成为雷达辐射源信号脉内特征提取的一种新方法。本文应用深度学习中的卷积神经网络来实现雷达辐射源信号的识别,主要工作如下:在研究信号时频分析的基础上,提出了基于时频图像和卷积神经网络的雷达辐射源信号识别方法 。该方法首原创 2020-08-21 10:19:32 · 8305 阅读 · 32 评论