小奇猫物语之产品经理篇(2)

文章讲述了产品经理的不同等级,从普通级到总监级再到老板级的能力要求,强调了同理心、行业认知和沟通能力在升级过程中的重要性。同时,讨论了产品经理的核心能力模型,包括用户需求识别、简约思维、迭代思维、流量思维和大数据思维的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

小奇猫物语之产品经理篇(2)

喵喵提示:小奇的产品经理篇(2)来咯,预告一下,前面几篇主要是讲产品经理的思维模式以及怎样去从一个学生思维转变成一个能带领一个项目的产品经理思维,所以前期思维方面介绍会比较多,不过铲屎官们别着急,后续也会有实战项目的练习,好好期待吧!喵喵~
请添加图片描述


喵喵前言😺

在前面我们介绍了产品经理是什么,以及它的工作、职业发展关键。而这篇文章,小奇将会向各位铲屎官们介绍产品经理等级、产品经理核心能力模型以及产品思维,望各位铲屎官们路过多多观望,欢迎提出指正和批评,这将是对小奇的最大鼓励😻


一、产品经理等级

按职位等级

普通级:

可以对某个产品进行“逆向工程”,产出逻辑自洽的需求文档。(会借鉴模仿)

1、(逆向工程)拿简单的产品练手,建立产品的用户画像,用思维导图拆解产品的功能模块,用墨刀/AXURE等工具,画出产品交互图。

总监级:

1、看到更多产品干系人(用户、用户身边人、产品团队、竞争对手、监管机构),看到用户需求多面性,在矛盾中适当舍取,跳脱自己单一视角,用同理心思考

2、筛选出当下预期产出最大的工作,并按照预期产出大小对需求列表进行排序

3、剔除伪需求,从源头确保整个产品团队能够持续高效地产出。

老板级:

1、对世界有深入理解,能够发现巨大产品机会,应对激烈竞争

2、预先设想产品的演化方向,推导产品演化路线图,找到可行的产品切入点,预判路线图上的竞争对手都有谁,在什么时机可以主动开战。

等级转换关键:

普通级->总监级:同理心、行业认知、沟通能力

同理心:多去接触产品干系人,通过观察他们地行为或者直接扮演角色进入他们的视角,了解他们的目的和手段

行业认知:对一个行业的知识、经验、策略和直觉,建立自己的知识体系


按天赋型

A类产品经理:有深度思考能力或超常同理心

B类产品经理:逻辑清新有产品心、喜欢该职业

C类产品经理:逻辑不清晰、同理心弱、功利心过重、不爱思考、缺乏好奇心

叮~喵喵提示:在各行各业天赋固然重要,但小奇认为,后天的努力必然会弥补天赋上的缺陷,人人都想成为仲永,但人人都不想仲永的结局,唯一的办法就是“勤能补拙”🤗🤗


二、产品经理的核心能力模型以及产品思维

实战项目 > 产品思维 > 沟通控制、逻辑能力,统筹资源,执行能力、情商

产品思维

1、用户需求:站在用户的角度去思考,注意甄别“伪需求”

​ 举例:将滴滴的模式套用在家政上,比如厕所堵了,进门没钥匙等等,可以在手机上发布订单,师傅接收订单就会上门服务。就像滴滴一样的模式。

【伪需求分析】:滴滴是在出门,包括出去玩、去办事等等都会用到,所以它的“使用频率”是非常高的,但家政服务虽然有非常好的痛点,但频率低啊(小奇仔细回想了自家的马桶已经五年没有堵过了···)

2、简约思维:参考2010时候,iPhone4的发布(视觉页面上的简约、功能与业务的简约)

​ 举例:微信1.0只能发图片和文字(最开始的产品都是简约的,后面逐渐迭代起来的),微信2.0开始发语音,微信3.0开启附近摇一摇,微信4.0开始有朋友圈,扫一扫等等,以及各种支付体系,小程序等等

3、迭代思维:敏捷式开发,例如政府类型的项目,或大型的,比较国体化的项目是瀑布流式开发,项目周期长。

​ 举例:当时最火的共享单车,共享KTV、充电宝、厨房等等,如果不是敏捷式开发,后知后觉的话,市场早就被占领了。所以要“小步快跑”的前进。

【好产品】:能在一个小点上吸引用户,将用户带入一个场景,然后让用户持续不断的自然增长。

4、流量思维:有用户才有流量。

5、大数据思维

【举例】:摩拜单车在各处安装感应器,获取心率等数据进行记忆,手机推送关于健康的咨询。
请添加图片描述


总结

这篇文章主要解释了产品经理的等级,其实不难发现,自身思维的转变,与等级的转变挂钩,关于思维,小奇只是对各个思维进行了解释和举例,然而如何拥有或者锻炼自己的产品经理思维,将在下一篇文章详细写道。本次小奇猫物语之产品经理篇(2)就到此结束啦!希望路过的铲屎官们能多多提出批评与指正,喵喵~😻😻

内容概要:本文详细介绍了如何利用MobileNet和TensorFlow开发一个高效的移动端垃圾分类系统。首先,作者使用Kaggle上的垃圾分类数据集进行预处理,采用ImageDataGenerator进行数据增强,确保模型能够应对不同拍摄条件下的垃圾图像。接着,通过迁移学习方法,使用预训练的MobileNetV2作为基础模型,并对其顶部结构进行了修改,以适配四分类任务。为了防止过拟合,加入了GlobalAveragePooling2D和Dropout层。训练过程中采用了Adam优化器和余弦退火学习率调度策略,同时使用ReduceLROnPlateau回调机制动态调整学习率。最后,将模型转换为TFLite格式以便在移动设备上高效运行,并解决了RGB通道顺序的问题,使得模型能够在红米Note等低端设备上流畅运行,达到60fps的速度,内存占用仅200MB。 适合人群:对机器学习、深度学习感兴趣的开发者,尤其是希望了解如何在移动端部署图像分类模型的研究人员和技术爱好者。 使用场景及目标:适用于需要快速、准确地进行垃圾分类的应用场景,如智能垃圾桶、环保应用等。目标是提高垃圾分类效率,减少人为错误,推动智能化垃圾分类系统的普及。 其他说明:文中提到的一些优化技巧,如数据增强、模型结构调整以及学习率调度等,对于提升模型性能至关重要。此外,针对实际部署中遇到的问题,如RGB通道顺序不一致等,提供了具体的解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不正经小新

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值