前面讲了无差拍预测电流控制,虽然它的稳态、动态性能很好,但是其鲁棒性差。为提高他的鲁棒性,我们可以用扩张状态观测器ESO去提高他的鲁棒性。但是加入ESO之后,系统的复杂度变高了。当观测器配置效果很好的时候,它可以估计非常大范围的参数扰动,因此我们进一步提出了基于ESO的无模型预测控制,用ESO去观测整个系统的参数扰动。
但是大家对观测器不一定都很熟悉,有没有更简单的办法去提高无差拍预测电流控制的鲁棒性呢?当然是有的。
本文章将介绍一种比较粗略的鲁棒性优化算法,它仅仅通过数学计算就得出电机系统中的电感以及磁链数值。
参考文献:
这是个新期刊,所以没有影响因子。文章写的还凑合,有一定的借鉴意义。
首先,文章分析了误差电流与实际电流的传递函数(z域),并且描述了参数变化时对应的系统极点的变化,具体内容如下图所示:
上式中,L0为电机系统中实际的电感参数,L为控制器中的电感参数。
文章中说,控制器的电感参数L,必须要在0到2*L0之间。当L0<L<2L0时,系统阻尼减小,这会造成超调或者振荡。这句话应该怎么理解?
电感就相当于对电流的阻尼。当控制器中的电感参数大于实际电感时,可以理解为,控制器认为这个电机的阻尼比较大,所以控制器一开始便想出比较大的力,去克服电机的阻尼;但是呢,实际电机的阻尼没有控制器想想中的这么大,所以控制器施加的力,实际上是偏大的。因此,在这样的情况下,控制器产生的电压给定值会偏大,进而使得电机的电流偏大,因此使系统存在超调。
当0<L<L0时,系统阻尼增大,这会使系统响应变慢。同样按照上述的方法去理解,控制器认为这个电机的阻尼比较小,所以控制器一开始便想出比较小的力;但实际上,电机的阻尼比控制器想象的阻尼要大。这时候你用一个较小的力去推动一个较大的系统,显然是非常慢的。
接下来,文章还分析了磁链失配对控制系统的影响。文章说到,磁链失配也是会影响电机的动态性能的。但是我感觉似乎好像对电机的动态性能影响不大。
关于磁链失配的分析,我觉得可以看看这篇文章:
可能这篇文章的期刊并不是很顶级,但我觉得这篇文章的工作其实做的很好。也是关于ESO的。在这篇文章的基础上,这位老师也是出了很多顶刊,大家感兴趣的可以去看看。
这篇文章的磁链失配分析如下。下式中,fai_c是控制器中的磁链,fai_m是电机的真实磁链。从这个表达式来看,fai_c-fai_m即磁链的失配,不会影响系统的极点,也就不会影响电机的动态性能。但是会存在一个稳态误差(这点是非常正确的,后面仿真可以验证)。
重新回到第一篇文章,分析了电感、磁链参数失配的影响之后,作者开始分析电感失配对系统的影响。但是在后文的分析中,作者忽略了电阻对电流误差的影响。为啥?以为仿真中的电机参数为例子哈,电感8.5mH,电阻3欧姆,控制周期100us,下面表达式的电阻项(也就是我圈起来的那一相),是不是≈0了
文章这里也说了这一点。
然后我们来计算由于参数失配造成的误差表达式吧。
下标是0代表电机实际参数哈,没有下标的是控制器里面的电机参数。
根据上述表达式,可以发现,电感误差只存在于d轴电流的误差里面。有了d轴电流误差,我们就可以计算出电感参数了。
计算式子如下:
根据式子(31)和(33)就可以计算出控制器电感和实际电感的误差ΔL了。注意一下,算出了ΔL之后,要经过式(34)进行低通滤波,为啥这个式子是低通滤波器,可以网上搜一下就知道了。为什么要经过低通滤波?不过低通的话,算出来这个ΔL会有很大的脉动,那么通过ΔL计算出来的电机实际参数也会有很大的脉动,这肯定会使系统不稳定的。
算出ΔL并经过低通滤波之后,就可以得到实际的电机参数了。计算公式如下:
根据d轴电流误差,我们可以计算出电机电感。假设计算出的电感非常准确,那么式(28)的q轴电流误差,只受到磁链的影响,其表达式如下:
那么就很好计算出,Δfai了,Δfai也要经过低通滤波。
系统的控制框图如下:(我是把MPCC改成了无差拍)
搭建的仿真如下:
仿真参数:
Tpwm = 1e-4;%开关周期
Tspeed = 5e-4;%转速采样周期,在实际DSP系统中,Tspeed会小于Tpwm
Pn = 4;%电机极对数
Ls = 8.5e-3;%定子电感,采用隐极的,Ld=Lq=Ls
Rs = 3;%定子电阻
flux = 0.1688;%永磁体磁链
Vdc = 311;%直流母线电压
iqmax = 30;%额定电流
先看看稳态时的波形吧,给定转速1200r/min(空载启动),0.2s加5Nm负载,0.35s给定转速改为1000r/min.

考虑几种比较恶劣的参数失配情况:
1.控制电感为实际电机电感的两倍。(因为电流大了会有磁饱和效应,进而使电感下降,这是实际中竟然会遇到的情况)
无参数补偿:(这时候可以看到,转矩的纹波和电流THD明显大了很多)


论文中的参数补偿:


可以看到,加了参数补偿之后,转矩的纹波基本没了。相电流THD从10.2%降到了2.3%,可见效果非常明显。论文中在这项实验的效果也很明显,如下图红框所示。
2.控制器中的磁链为实际磁链的两倍。
无参数补偿:


前面说到,磁链失配主要是影响电机电流的静差。从上面可以看到,电机的转矩和三相电流基本没啥变化。相电流THD只有2.28%,但是我们可以看到实际的q轴电流与给定的q轴电流之间明显存在一个差值。这都是符合我们的理论分析的。
论文中的方法:


加了参数补偿之后,这个q轴电流静差减少了一些,但是还是有一点误差的。
其实文章的做法,做了很多简化。比如,不考虑电阻;在计算磁链时,实际上没办法保证电感一定无误差,因此也就不能根据q轴电流误差只与磁链有关的假设来进行参数的辨识。
而且其在系统构造上也有一定的问题。但是,这个方法贵在简单,而且容易理解,很轻松地就可以实现。