050 排序算法介绍和分类
排序也称排序算法(Sort,Algorithm),排序是将一组数据,依指定的顺序进行排列的过程
排序的分类:
- 内部排序:指将需要处理的所有数据都加载到内部存储器(内存)中进行排序
- 外部排序法:数据量过大,无法全部加载到会败在中,需要借助外部存储进行排序
算法的时间复杂度
度量一个程序执行时间的两种方法
- 事后统计的方法,这种方法可行,但是有两个问题:一是想对设计的算法的运行性能进行评测,需要实际运行该程序;二是所得旱的统计量依赖于计算机的硬件、软件等环境因素,这种方式,要在同一台计算机的相同状态下运行,才能比较哪个算法速度快
- 事前估算的方法:通过分析某个算法的时间复杂度来判断哪个算法更优
051 时间频度介绍和特点
时间频度
基本介绍:一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数为语句频度 或时间频度。记为:T(n)
例子:
比如计算 1 - 100 所有数字之和,设计两种算法
int total = 0 , end = 100;
for(int i = 1; i <= end; i++{
total += i;
}
T(n) = n + 1;
total = (1 + end) * end / 2;
T(n) =1;
忽略常数项
结论:
- 2n + 20 和 2n 随着 n 变大,执行曲线无限接近,20可以忽略
- 3n + 10 和 3n 随着 n 变大,执行曲线无限接近,10可以忽略
忽略低次项
结论:
3. 2n^2(2n的平方) + 3n + 10 和 2n^2 变化,执行曲线无限接近,可以忽略 3n + 10
4. n^2 + 5n + 20 和 n^2随着 n 变大,执行曲线无限接近,可以忽略 5n + 20
忽略系数
5. 随着 n 值变大, 5n^2 + 7n 和 3n^2 + 2n,执行曲线生命,说明这种情况下,5和3可以忽略
6. 而 n^3 + 5n 和 6^3 +4n,执行曲线分离,说明多少次方是关键
T(n)
随着 n 的变大,常数项、低次项、系数可以忽略
052 时间复杂度计算和举例说明
- 一般情况下,算法中的基本操作语句的重复执行次数是问题规模 n 的某个函数,用 T(n)表示,若有某个辅助函数f(n),使得当 n 趋近于无穷大时,T(n)/ f(n)的极限值为不等于零的常数,则称 f(n)是 T(n)的同数量级函数。记作T(n)= o(f(n)),称 o(f(n))为算法的渐进时间复杂度,简称时间复杂度
- T(n)不同,但时间复杂度可能相同。如: T(n) = n2 + 7n + 6 与 T(n) = 3n2 + 2n + 2 它们的 T(n)不同,但时间复杂度相同,都为 O(n2 )
- 计算时间复杂度的方法
- 用常数1代替运行时间中的所有加法常数
- 修改后的运行次数函数中,只保留最高阶项
- 去除最高阶项的系数
常见的时间复杂度
说明: 常见的算法时间复杂度由小到大依次为:o(1) < o(log2n) < o(n) < o(nlog2n) < o(n2) < o(n3) < o(nk) < o(2n) ,随着问题规模 n 的不断增大,上述时间复杂度不断增大,算法的执行效率越低。
应该尽可能避免使用指数阶的算法
常数阶
对数阶
线性阶
线性对数阶
平方阶
立方阶、k次方阶
053 平均和最坏时间复杂度介绍
- 平均时间复杂度是指所有可能的输入实例均以等概率出现的情况下,该算法的运行时间
- 最坏情况下的时间复杂度称最坏时间复杂度。一般讨论的时间复杂度是最坏情况下的时间复杂度。这样做的原因是:最坏情况下的时间复杂度是算法在任何输入实例上运行时间的界限,这就保证了算法的运行时间不会比最坏时间更长
- 平均时间复杂度和最坏时间复杂度是否一致,和算法有关
算法的空间复杂度
介绍:
- 类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)定义为该算法所耗费的存储空间,它也是问题规模的函数
- 空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。有的算法需要占用的临时工作单元数与解决问题的规模 n 有关,它随着 n 的增大而增大,当 n 较大时,将占用较多的存储单元,例如快速排序和归并算法就属于这种情况
- 在做算法分析时,主要讨论的是时间复杂度。从用户使用体验上看,更看重的程序执行的速度。一些缓存产品(redis,memcache)和算法(基数排序)本质就是用空间换时间