常用的生成模型速览-VAE、Flow-based Model、Diffusion Model、GAN

1.引言

假设我们今天的图像生成任务是拿一段文字生成一张图,一张图所包含的信息是胜过千言万语的,而你输入的文字只不过是其中的一部分,所以说给一个句子生成的图像是有多种可能的。也就是输出是一个分布,在这个分布内的都可以说是正确答案
在这里插入图片描述
今天的影像生成的模型都有一个共同的套路,并不是直接给一段文字就输出,而是有一个额外的输入,这个额外的输入的是从某一个distribution(简单的你长什么样的distribution)sample出来的一个向量(高维),如果我们把文字用y来描述,影像用x来描述,那么正确答案就可以写成 p ( x ∣ y ) p(x|y) p(xy),它显然很复杂,要是知道他是什么样,就可以从它里面sample出来正确答案。它复杂到没法知道长什么样。所以整个影像生成模型就相当于产生下图的对应关系,也就是把Normal Distribution中sample出来的东西对应到正确的狗在奔跑的图片,接下来难的点就在于怎样把Normal Distribution做一些扭曲扭成

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值