1.引言
假设我们今天的图像生成任务是拿一段文字生成一张图,一张图所包含的信息是胜过千言万语的,而你输入的文字只不过是其中的一部分,所以说给一个句子生成的图像是有多种可能的。也就是输出是一个分布,在这个分布内的都可以说是正确答案
今天的影像生成的模型都有一个共同的套路,并不是直接给一段文字就输出,而是有一个额外的输入,这个额外的输入的是从某一个distribution(简单的你长什么样的distribution)sample出来的一个向量(高维),如果我们把文字用y来描述,影像用x来描述,那么正确答案就可以写成 p ( x ∣ y ) p(x|y) p(x∣y),它显然很复杂,要是知道他是什么样,就可以从它里面sample出来正确答案。它复杂到没法知道长什么样。所以整个影像生成模型就相当于产生下图的对应关系,也就是把Normal Distribution中sample出来的东西对应到正确的狗在奔跑的图片,接下来难的点就在于怎样把Normal Distribution做一些扭曲扭成