Python实现基于物品的协同过滤算法(ItemCF)

354 篇文章 ¥59.90 ¥99.00
本文介绍了Python实现基于物品的协同过滤算法(ItemCF),详细阐述了算法原理,包括构建物品-用户矩阵、计算物品相似度及生成推荐列表。通过提供的源码,可以利用用户历史评分数据生成推荐,提升推荐系统效果。

Python实现基于物品的协同过滤算法(ItemCF)

协同过滤算法是推荐系统中广泛应用的算法之一,而基于物品的协同过滤算法(ItemCF)是其中的一种。本文将通过Python实现ItemCF算法,并提供完整源码。

首先,我们需要了解ItemCF算法的原理。基于物品的协同过滤算法是通过分析用户历史上的行为记录,计算物品之间的相似度,从而推荐与用户历史喜好相似的物品。其主要步骤包括:

  1. 构建物品-用户矩阵
  2. 计算物品之间的相似度
  3. 根据相似度矩阵生成推荐列表

接下来,让我们看看如何用Python实现该算法。

代码如下:

import numpy as np
from scipy.sparse import lil_matrix
from sklearn.metrics.pairwise import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值