Python实现基于物品的协同过滤算法(ItemCF)
协同过滤算法是推荐系统中广泛应用的算法之一,而基于物品的协同过滤算法(ItemCF)是其中的一种。本文将通过Python实现ItemCF算法,并提供完整源码。
首先,我们需要了解ItemCF算法的原理。基于物品的协同过滤算法是通过分析用户历史上的行为记录,计算物品之间的相似度,从而推荐与用户历史喜好相似的物品。其主要步骤包括:
- 构建物品-用户矩阵
- 计算物品之间的相似度
- 根据相似度矩阵生成推荐列表
接下来,让我们看看如何用Python实现该算法。
代码如下:
import numpy as np
from scipy.sparse import lil_matrix
from sklearn.metrics.pairwise import
本文介绍了Python实现基于物品的协同过滤算法(ItemCF),详细阐述了算法原理,包括构建物品-用户矩阵、计算物品相似度及生成推荐列表。通过提供的源码,可以利用用户历史评分数据生成推荐,提升推荐系统效果。
订阅专栏 解锁全文
4174

被折叠的 条评论
为什么被折叠?



