【OpenMMLab 实战营打卡-第4课】计算机视觉之目标检测算法基础

文章探讨了目标检测的基础,包括使用滑窗方法的效率问题及通过卷积网络的改进。介绍了两阶段和单阶段检测方法,如R-CNN、FasterR-CNN、YOLO等。此外,还讨论了边界框、锚框、IOU、NMS以及正负样本不均衡问题,特别是RetinaNet如何利用FocalLoss解决这个问题。
摘要由CSDN通过智能技术生成

目标检测算法基础

滑窗 Sliding Window

问题:效率问题,计算成本特别高

改进:1.启发式算法替换暴力遍历:实现复杂

2.减少冗余计算,采用卷积网络实现密集预测:普遍采用

改进方法思路:用卷积一次性计算所有特征,再取出对应位置的特征完成分类

重叠区域只计算一次卷积特征,与窗的个数无关

特征图上一个位置的特征:

在特征图上进行密集预测,实际上就是用卷积去进行滑窗这件事,但是它的效率是远远高于滑窗的。

基本范式:

两阶段和单阶段方法:

目标检测的进化过程:

传统方法DPM -> 两阶段方法 R-CNNFaster R-CNN -> 单阶段方法 YOLO SSD RetinaNet -> 级联方法 -> Transformer方法

算法基础知识:

边界框: BoundingBox框指图像上的矩形框 边界横平竖直,包围感兴趣的物体的框

区域:就是框

感兴趣区域:ROI

锚框:AnchorBox 类似滑窗

交并比:交集面积和并集面积的比值,是矩形框重合程度的衡量指标。IOU,衡量精度的

置信度:模型认可自身预测结果的程度。

非极大值抑制NMS 在多个近似的检测框里面保留置信度最高的

边界框回归:让模型在预测类别的同时预测边界框的偏移量

边界框编码BboxCoding:

偏移量的数值很大,对他进行编码可以作为回归模型的预测目标。

降低区域提议的计算成本:

锚框Anchor:在原图上生成不同尺寸的基准框

正负样本不均衡:朴素的分类损失无法驱动检测器达到漏检和错检的平衡,通俗来说,就是更加倾向于背景预测。

Retina Net是基于focal loss的一阶段的模型,解决了样本不均衡的问题

评估方法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值