Cross-Domain Gradient Discrepancy Minimization for Unsupervised Domain Adaptation——CVPR2021

摘要

论文和代码链接
以前的对抗性学习方法仅重点关注两个不同分类器的输出之间的相似性。然而,输出的相似性不能保证目标样本的分类的准确性,即使两个分类器之间的差异很小,目标样本也可能与错误类别匹配。在本文中,我们提出了一种跨域梯度差异最小化(CGDM)方法,该方法明确地最小化了源样本和目标样本产生的梯度的差异。为了计算目标样本的梯度信息,我们通过基于聚类的自我监督学习进一步获得目标伪标签。

引言

现有的对抗域适应方法可以以两种方式实现。

  • 应用额外的域鉴别器,以区分样本是否来自源或目标域。同时,通过从输入样本学习不可区分的特征来欺骗域判别器
  • 与两个分类器的网络内对抗战略[36,14]。通过分类器和生成器之间的最大—最小化在交叉分类器输出差异上,可以有效地通过决策边界检测到远离源域外的目标样本,从而可以建立特征对齐,同时保留判别性。

CGDM采用源泉和目标样本之间的梯度差异作为额外的监督。此外,考虑到源代码器获得的伪标签可能不够准确,我们利用基于聚类的自我监督方法来获得用于目标样本的更可靠的伪标签。通过对齐梯度向量,可以在类别级别更好地对齐两个域的分布。

主要贡献总结如下:

  • 该方法明确地最小化了源和目标样本产生的梯度差异。值得注意的是,我们制定所提出的梯度差异最小化作为广义学习损失,这可以很容易地应用于其他UDA范例。
  • 为了计算目标样本的
  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值