sklearn玩转机器学习
文章平均质量分 97
本专栏内包含基于sklearn实现经典机器学习算法,帮助新手对算法有更深刻的认识,快速学会数据分析,理论与实践相结合,每一篇文章都附带有完整的代码+原理讲解。
海洋 之心
阿里云社区专家博主,图神经网络-大数据-推荐系统研究者,专注于计算机领域前沿技术的分享等人工智能算法研究工作
展开
-
sklearn实现Stochastic Gradient Descent(随机梯度下降法)
随机梯度下降(Stochastic Gradient Descent, SGD)是一种用于优化的算法,尤其在机器学习和深度学习中非常流行。它是梯度下降算法的一个变体,主要用于减少计算的复杂性,特别是在处理大数据集时。原创 2024-01-15 13:15:03 · 1386 阅读 · 0 评论 -
sklearn实现支持向量机(异常检测)
支持向量机(SVM)在异常检测领域的应用主要是通过一种特殊形式的SVM实现的,即单类支持向量机(One-Class SVM)。这种方法的核心思想是基于数据集找出一个决策边界,这个边界尽可能地包含所有正常数据点(inliers),同时排除异常数据点(outliers)。原创 2024-01-15 12:09:14 · 1036 阅读 · 0 评论 -
sklearn实现SVR回归(支持向量机)
支持向量回归(Support Vector Regression,SVR)是一种用于回归分析的机器学习算法,它借鉴了支持向量机(SVM)分类算法的思想。原创 2024-01-12 11:14:56 · 5781 阅读 · 1 评论 -
sklearn实现SVC分类(支持向量机)
SVC(Support Vector Classification)是支持向量机(Support Vector Machine,SVM)的一种应用,用于解决分类问题。支持向量机是一种强大的监督学习算法,广泛应用于数据分类和回归任务。原创 2024-01-12 10:57:54 · 3396 阅读 · 0 评论 -
sklearn实现核岭回归(Kernel ridge regression)
核岭回归(Kernel Ridge Regression,KRR)是一种结合了岭回归(Ridge Regression)和核技巧的回归方法。它主要用于解决非线性问题,同时对数据进行正则化以防止过拟合。原创 2024-01-11 18:59:28 · 2707 阅读 · 0 评论 -
sklearn实现二次判别分析(Quadratic Discriminant Analysis)
二次判别分析(QDA,Quadratic Discriminant Analysis)是一种用于分类的统计方法。它是线性判别分析(LDA)的扩展,适用于情况下数据集的不同类别具有不同的协方差结构。QDA的主要特点和应用概述如下:原创 2024-01-11 18:26:34 · 1351 阅读 · 0 评论 -
sklearn实现线性判别分析(Linear Discriminant Analysis)
LDA(Linear Discriminant Analysis,线性判别分析)是一种用于分类和降维的统计方法,尤其适用于多分类问题。LDA的核心目标是找到一个投影,使得不同类别的数据在这个新的空间中尽可能地分开。原创 2024-01-10 13:41:13 · 1283 阅读 · 0 评论 -
sklearn实现Bayesian Regression
在这篇文章中,我们将深入探讨贝叶斯回归——一种在统计学和机器学习领域得到广泛应用的方法。贝叶斯回归以其结合概率理论和统计学的方法著称,特别是在处理不确定性和复杂数据时展现出其独特优势。原创 2024-01-10 13:12:44 · 1020 阅读 · 0 评论 -
sklearn实现LAR回归(Least Angle Regression)
在这篇文章中,我们将深入探讨最小角回归(LAR)——一种在统计学和机器学习领域中广泛使用的方法。最小角回归以其在解决高维数据回归问题中的优势而著称,尤其是在特征选择和计算效率方面。原创 2024-01-09 08:57:51 · 1362 阅读 · 0 评论 -
sklearn实现弹性网络回归(Elastic Net)
在这篇文章中,我们将深入了解Elastic-Net回归——一个在统计学和机器学习领域中广泛应用的高效工具。Elastic-Net回归结合了岭回归和Lasso回归的特点,能够有效处理特征选择和正则化问题,尤其在面对包含多重共线性特征的复杂数据集时表现出色。原创 2024-01-09 08:56:12 · 2814 阅读 · 0 评论 -
sklearn实现岭回归分类(RidgeClassifier)
在这篇文章中,我们将深入探索岭回归分类器——一种在统计学和机器学习领域广泛应用的算法,尤其适用于处理具有多重共线性特征的分类问题。岭回归分类器以其处理共线性问题的能力和强大的稳健性而著称,是解决线性分类问题的重要工具。原创 2024-01-08 09:22:06 · 1543 阅读 · 1 评论 -
sklearn实现岭回归(Ridge Regression)
这篇文章将引领我们深入了解岭回归——一个在统计学和机器学习领域中广泛应用的回归分析方法。岭回归特别适用于处理多重共线性数据,即当输入特征高度相关时。通过引入正则化项,岭回归能有效减少过拟合问题,保持模型的稳健性。原创 2024-01-08 09:21:08 · 2062 阅读 · 0 评论 -
sklearn实现经典机器学习算法(附代码+原理介绍)
在这个专栏里,我们会用sklearn这个超级强大的魔法工具来实现各种闪闪发光的机器学习算法!不用担心难度哦,我会用最简单、最可爱的方式,带领大家一起探索算法的神秘世界!原创 2024-01-07 15:04:28 · 1997 阅读 · 0 评论 -
sklearn实现逻辑回归(Logistic Regression)
在这篇文章中,我们将深入探索逻辑回归——一种在统计学和机器学习领域广泛应用的分类算法,特别是在处理二分类问题时。逻辑回归不仅以其简洁性和强大的解释性著称,还因其在多个领域的广泛应用而备受青睐。原创 2024-01-07 14:58:59 · 3145 阅读 · 0 评论