京东用户行为分析
- 项目背景
京东作为传统电商巨头,京东商城与京东物流的发展相得益彰,然而各种新兴的电商模式,带来了千人千面的购物方式和电商平台更加激烈的竞争,电商平台发展初期的粗放式经营也转向了利用大数据和算法,基于用户行为,实现精细化营销。在这样的背景下,本文基于京东平台的部分数据进行了用户行为分析。
本次分析的目的主要是从数据中探索以下问题,得出结论,并提供一些可行性的建议:
- 分析用户在使用App整个过程中的特点,从获客,激活,留存,营收等方面,寻找可以优化的点
- 对用户购买行为进行分析,找出用户行为转化中存在的问题,最受欢迎的商品,找到针对用户运营和商品推荐的方向
- 进行用户价值分析,对用户进行分层,采用更有针对性的营销
- 分析框架
(一)数据集介绍
原始数据为京东竞赛数据集,数据集共有五个列表文件,包含了“2018-02-01”至“2018-04-15”之间在京东平台的用户行为数据,评论数据,商品数据,商家店铺数据以及用户数据
在本次分析过程中,需要用到的用户行为数据,商品数据,以及用户数据,原始数据集中行为数据列表过大,故截取了2018-04-01”至“2018-04-15”的数据,对用户行为数据集进行清洗:
jdata_action:
user_id |
用户唯一标识 |
sku_id |
商品唯一标识 |
action_time |
行为时间 数据清洗时拆分成date,hour,weekday |
type |
1.pv 2.pay 3.fav 4.comm 5.cart |
jdata_product:
sku_id |
商品唯一标识 |
brand |
品牌名 |
shop_id |
店铺id |
cate |
品类 |
market_time |
商品上市时间 |