人脸情绪识别

该程序运用计算机视觉和深度学习技术,通过加载预训练模型分析人脸表情,结合OpenCV进行人脸检测,判断是否走神。当连续5秒检测到‘悲伤’、‘中性’或‘疲劳’表情时,系统会发出警告,适用于提升工作场所的安全性和效率,如驾驶员监控。
摘要由CSDN通过智能技术生成

人脸情绪识别

介绍

这个程序是一个基于计算机视觉和深度学习的睡意检测系统,能够实时检测摄像头中人脸的表情并判断是否走神。程序通过加载预先训练好的深度学习模型来识别人脸表情,使用OpenCV提供的人脸检测器定位人脸位置,通过计算人脸表情变化的频率来判断是否走神。如果连续5秒内检测到人脸表情为“悲伤”,“中性”或“疲劳”,则认为人处于走神状态,程序将在摄像头画面上显示警告信息。该程序可以被应用于长时间需要集中注意力的工作场所,例如驾驶员驾驶汽车、操作机器人的工作环境,对于保障工作安全和提高工作效率都具有重要的意义。

软件架构

软件架构说明

  1. 加载模型和创建分类标签:使用Keras库加载已经训练好的深度学习模型,同时创建分类标签,用于将模型输出转换为情绪标签。

  2. 人脸检测:使用OpenCV库中的Haar级联分类器检测图像中的人脸,并定位出人脸的位置和大小。

  3. 情绪预测:从人脸图像中提取出人脸区域,然后将其转换为48x48像素的大小,并将其作为输入传递给深度学习模型进行情绪预测。

  4. 显示结果:根据预测结果和人脸检测结果,将预测出的情绪标签和人脸矩形框绘制在图像上,并通过计数器和标志位判断是否存在走神现象,然后在屏幕上显示相应的文本信息。同时,通过在视频循环中使用cv2.imshow()函数显示实时摄像头数据,并通过按下’q’键退出程序。

安装教程
  1. 首先,需要从官网下载 Python 的安装包并安装(https://www.python.org/downloads/)。
  2. 安装完 Python 后,需要使用 pip 命令安装程序所需的相关库,包括 numpy、opencv-python、keras 和 statistics。可以使用以下命令进行安装
pip install numpy
pip install opencv-python
pip install keras
pip install statistics

  1. 需要从网络上下载训练好的神经网络模型文件 model.h5 和人脸检测器文件 haarcascade_frontalface_default.xml。可以在程序中直接使用这些文件的路径,也可以将这些文件下载到与程序同一目录下。
  2. gitee链接
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值