信号处理 | 计算功率谱熵代码

本文介绍了如何使用Python的numpy和scipy库中的函数来计算信号的功率谱熵,通过welch函数获取功率谱密度并进行归一化处理,最终得到信号的熵值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算功率谱熵

import numpy as np
from scipy.signal import welch
from scipy.stats import entropy

def power_spectral_entropy(signal, fs):
    # 计算功率谱密度
    freq, psd = welch(signal, fs)
    # 归一化功率谱密度
    psd_norm = np.divide(psd, psd.sum())
    # 计算功率谱熵
    pse = entropy(psd_norm)
    return pse

# 生成一个随机信号
fs = 100  # 采样频率
t = np.arange(0, 10, 1/fs)  # 时间数组
signal = np.random.randn(len(t))  # 随机信号

# 计算功率谱熵
pse = power_spectral_entropy(signal, fs)
print('Power Spectral Entropy:', pse)
## 输出结果:
Power Spectral Entropy: 4.784119734414421
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

故障诊断与python学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值