有限元分析数学原理

有限元分析的数学求解原理

梁弯曲问题的近似求解:

问题的提法为,求解挠度函数 v ( x ) v(x) v(x),使其满足以下方程和边界条件:
L ( v ( x ) ) + b ˉ = 0 B C ( u ) : g u ( v ( x ) ) = 0 B C ( u ) : g p ( v ( x ) ) = 0 L(v(x))+\bar{b}=0 \\ BC(u): g_{u}(v(x))=0 \\ BC(u): g_{p}(v(x))=0 L(v(x))+bˉ=0BC(u):gu(v(x))=0BC(u):gp(v(x))=0
对于平面梁的弯曲问题, L ( ) = − d 4 d x 4 , b ˉ = p ˉ ( x ) L( )=- \frac{d^4}{dx^4},\bar{b}=\bar{p}(x) L()=dx4d4,bˉ=pˉ(x)

1.加权残值法

试函数方法基本原理:先假定一满足边界条件的试函数,然后将其带入控制方程,通过使原方程的残差值最小来确定试函数中的待定系数。

将试函数带入微分控制方程,则一定存在残差,记为,
R = L ( v ^ ( x ) ) + b ˉ ≠ 0 R=L(\hat{v}(x))+\bar{b}\neq0 R=L(v^(x))+bˉ=0
对于更一般的情形,设有一组满足边界条件的试函数 ϕ i ( x ) \phi_{i}(x) ϕi(x)​​,将其线性组合为新的试函数
v ^ ( x ) = c 1 ϕ 1 ( x ) + c 2 ϕ 2 ( x ) + ⋅ ⋅ ⋅ + c n ϕ n ( x ) \hat{v}(x)=c_1\phi_1(x)+c_2\phi_2(x)+···+c_n\phi_n(x) v^(x)=c1ϕ1(x)+c2ϕ2(x)++cnϕn(x)
将其带入原始方程,必定存在残差R,存在真实的 c 1 , c 2 , ⋯   , c n c_1,c_2,\cdots,c_n c1,c2,,cn使得加权残差的积分为0。
∫ Ω w t 1 ⋅ R ( c 1 , c 2 , ⋯   , ϕ 1 , ϕ 2 , ⋯   , ϕ n ) d Ω = 0 ∫ Ω w t 2 ⋅ R ( c 1 , c 2 , ⋯   , ϕ 1 , ϕ 2 , ⋯   , ϕ n ) d Ω = 0 ⋮ ∫ Ω w t 3 ⋅ R ( c 1 , c 2 , ⋯   , ϕ 1 , ϕ 2 , ⋯   , ϕ n ) d Ω = 0 \int_{\Omega} w_{t1}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0 \\ \int_{\Omega} w_{t2}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0 \\ \vdots \\ \int_{\Omega} w_{t3}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0 Ωwt1R(c1,c2,,ϕ1,ϕ2,,ϕn)dΩ=0Ωwt2R(c1,c2,,ϕ1,ϕ2,,ϕn)dΩ=0Ωwt3R(c1,c2,,ϕ1,ϕ2,,ϕn)dΩ=0
其中, w t 1 , w t 2 ⋯   , w t n w_{t1},w_{t2}\cdots,w_{tn} wt1,wt2,wtn为权函数。

Galerkin 加权残值法

如果将权函数 w t 1 , w t 2 ⋯   , w t n w_{t1},w_{t2}\cdots,w_{tn} wt1,wt2,wtn ϕ 1 , ϕ 2 , ⋯   , ϕ n \phi_1,\phi_2,\cdots,\phi_{n} ϕ1,ϕ2,,ϕn,则该方法称为Galerkin加权残值方法。

对于简支梁弯曲问题,可将试函数 v ^ ( x ) \hat{v}(x) v^(x)​取为,注意:此处 试函数需满足边界条件
v ^ ( x ) = c 1 ϕ 1 = c 1 ⋅ sin ⁡ π x l \hat{v}(x)=c_{1}\phi_{1}=c_{1} \cdot \sin{\frac{\pi x}{l}} v^(x)=c1ϕ1=c1sinlπx
残差为
R = E I d 4 ( c 1 ϕ 1 ( x ) ) d x 4 − p 0 ˉ ≠ 0 R=EI\frac{\mathrm{d}^4(c_{1}\phi_{1}(x))}{\mathrm{d}x^4}-\bar{p_{0}}\neq0 R=EIdx4d4(c1ϕ1(x))p0ˉ=0
带入式(4),求解得
c 1 = 4 l 4 π E I p 0 ˉ c_{1}=\frac{4l^{4}}{\pi EI}\bar{p_{0}} c1=πEI4l4p0ˉ
则最终的结果为:
v ^ ( x ) = 4 l 4 π E I p 0 ˉ s i n π x l \hat{v}(x)=\frac{4l^{4}}{\pi EI}\bar{p_{0}}sin{\frac{\pi x}{l}} v^(x)=πEI4l4p0ˉsinlπx
若提高精度,使
v ^ 2 ( x ) = c 1 ϕ 1 + c 2 ϕ 2 = c 1 ⋅ sin ⁡ π x l + c 2 ⋅ sin ⁡ 3 π x l \hat{v}_2(x)=c_{1}\phi_{1}+c_{2}\phi_{2}=c_{1} \cdot \sin{\frac{\pi x}{l}}+c_{2} \cdot \sin{\frac{3\pi x}{l}} v^2(x)=c1ϕ1+c2ϕ2=c1sinlπx+c2sinl3πx
带入,可以解出待定系数,
c 1 = 4 l 4 p ˉ 0 π 5 E I , c 2 = 4 l 4 p ˉ 0 243 π 5 E I c_1=\frac{4l^4\bar{p}_{0}}{\pi ^{5}EI}, c_2=\frac{4l^4\bar{p}_{0}}{243\pi ^{5}EI} c1=π5EI4l4pˉ0,c2=243π5EI4l4pˉ0

残值最小二乘法

同样,设有一个试函数满足所有的边界条件,将其带入原始方程,则必定有残差值R,存在 c 1 , c 2 ⋯   , c n c_1,c_2\cdots,c_n c1,c2,cn​,使得残差的平方加权积分取极小值,即
m i n [ E r r = ∫ Ω w t ⋅ R 2 ( c 1 , c 2 , ⋯   , ϕ 1 , ϕ 2 , ⋯   , ϕ n ) d Ω ] min[E_{rr}=\int_{\Omega}w_{t}\cdot R^2(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega] min[Err=ΩwtR2(c1,c2,,ϕ1,ϕ2,,ϕn)dΩ]
其中, w t w_{t} wt为权函数,一般取1,将式(16)取极值,有
∂ E r r ∂ c 1 = 0 ∂ E r r ∂ c 2 = 0 ⋮ ∂ E r r ∂ c 3 = 0 \frac{\partial{E_{rr}}}{\partial{c_{1}}}=0 \\ \frac{\partial{E_{rr}}}{\partial{c_{2}}}=0 \\ \vdots \\ \frac{\partial{E_{rr}}}{\partial{c_{3}}}=0 c1Err=0c2Err=0c3Err=0
通过求解可以得出试函数的待定系数。

特点

  • 试函数需要满足所有的边界条件,即位移边界条件与力边界条件;

  • 积分中试函数的最高阶导数较高(对于梁的弯曲问题,导数为4阶,对于一般弹性问题,导数为2阶),因此对试函数的连续性要求较高

  • 整个方法为计算一个几何域的积分

  • 通过求取积分问题的最小值==(即误差最小)==,将原方程的求解变为线性方程组的求解。

2.虚功原理、最小势能原理

加权残值法对试函数连续性的要求过高,以下方法可以在只满足位移边界条件的同时,放松连续性的要求。

虚功原理

假想: 在平衡力系上作用微小的扰动==(不影响原平衡条件)==,且外力作用的位置产生了微小的位移,该位移称为虚位移

**弹性力学中的虚功原理:**在外力作用下处于平衡状态的变形体,当给物体以微小虚位移时,外力所做的总功等于物体的总虚应变能(即应力在由虚位移产生的虚应变上所做的功)。

梁弯曲求解

设满足边界条件的位移场为:
v ^ ( x ) = c 1 sin ⁡ π x l \hat{v}(x)=c_{1}\sin{\frac{\pi x}{l}} v^(x)=c1sinlπx
其中, c 1 c_1 c1为待定系数,则虚位移场为
δ v ^ ( x ) = δ c 1 sin ⁡ π x l \delta \hat{v}(x)=\delta c_{1}\sin{\frac{\pi x}{l}} δv^(x)=δc1sinlπx
则,该梁的虚应变能为(注意:虚应变能没有1/2)
δ U = ∫ Ω σ x δ ε x d Ω = ∫ 0 l ∫ A E ⋅ ε x δ ε x d A ⋅ d x = E I l 2 ( π l ) 4 ⋅ c 1 ⋅ δ c 1 \delta U=\int_{\Omega}{\sigma_{x}\delta\varepsilon_{x}}\mathrm{d}\Omega\\ =\int_0^l \int_{A}E\cdot \varepsilon_{x}\delta\varepsilon_{x}\mathrm{d}A\cdot\mathrm{d}x \\ =\frac{EIl}{2}({\frac{\pi}{l}})^{4}\cdot c_{1}\cdot \delta c_1 δU=ΩσxδεxdΩ=0lAEεxδεxdAdx=2EIl(lπ)4c1δc1
外力虚功为:
δ W = ∫ 0 l p ˉ 0 δ v ^ d x \delta W=\int_{0}^{l}\bar{p}_{0}\delta \hat{v}\mathrm{d}x δW=0lpˉ0δv^dx
由虚功原理,有 δ W = δ U \delta W=\delta U δW=δU

可以解出 c 1 c_1 c1​.

最小势能原理

在所有满足位移边界条件的许可位移场中,真实的位移场 u ^ i \hat{u}_{i} u^i使得物体的总势能取得最小值,即
m i n [ Π ( u ^ i ) = U − W ] min [\Pi(\hat{u}_{i})=U-W] min[Π(u^i)=UW]
其中 U = 1 2 ∫ Ω σ x ⋅ ε x ⋅ d Ω U=\frac{1}{2}\int_{\Omega}\sigma_x \cdot \varepsilon_{x}\cdot \mathrm{d}\Omega U=21ΩσxεxdΩ; W = ∫ 0 l p ˉ 0 ⋅ v ^ ( x ) d x W=\int_{0}^{l}\bar{p}_{0}\cdot \hat{v}(x)\mathrm{d}x W=0lpˉ0v^(x)dx​,

利用偏导为零可以求得待定系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值