有限元分析的数学求解原理
梁弯曲问题的近似求解:
问题的提法为,求解挠度函数
v
(
x
)
v(x)
v(x),使其满足以下方程和边界条件:
L
(
v
(
x
)
)
+
b
ˉ
=
0
B
C
(
u
)
:
g
u
(
v
(
x
)
)
=
0
B
C
(
u
)
:
g
p
(
v
(
x
)
)
=
0
L(v(x))+\bar{b}=0 \\ BC(u): g_{u}(v(x))=0 \\ BC(u): g_{p}(v(x))=0
L(v(x))+bˉ=0BC(u):gu(v(x))=0BC(u):gp(v(x))=0
对于平面梁的弯曲问题,
L
(
)
=
−
d
4
d
x
4
,
b
ˉ
=
p
ˉ
(
x
)
L( )=- \frac{d^4}{dx^4},\bar{b}=\bar{p}(x)
L()=−dx4d4,bˉ=pˉ(x)
1.加权残值法
试函数方法基本原理:先假定一满足边界条件的试函数,然后将其带入控制方程,通过使原方程的残差值最小来确定试函数中的待定系数。
将试函数带入微分控制方程,则一定存在残差,记为,
R
=
L
(
v
^
(
x
)
)
+
b
ˉ
≠
0
R=L(\hat{v}(x))+\bar{b}\neq0
R=L(v^(x))+bˉ=0
对于更一般的情形,设有一组满足边界条件的试函数
ϕ
i
(
x
)
\phi_{i}(x)
ϕi(x),将其线性组合为新的试函数
v
^
(
x
)
=
c
1
ϕ
1
(
x
)
+
c
2
ϕ
2
(
x
)
+
⋅
⋅
⋅
+
c
n
ϕ
n
(
x
)
\hat{v}(x)=c_1\phi_1(x)+c_2\phi_2(x)+···+c_n\phi_n(x)
v^(x)=c1ϕ1(x)+c2ϕ2(x)+⋅⋅⋅+cnϕn(x)
将其带入原始方程,必定存在残差R,存在真实的
c
1
,
c
2
,
⋯
,
c
n
c_1,c_2,\cdots,c_n
c1,c2,⋯,cn使得加权残差的积分为0。
∫
Ω
w
t
1
⋅
R
(
c
1
,
c
2
,
⋯
,
ϕ
1
,
ϕ
2
,
⋯
,
ϕ
n
)
d
Ω
=
0
∫
Ω
w
t
2
⋅
R
(
c
1
,
c
2
,
⋯
,
ϕ
1
,
ϕ
2
,
⋯
,
ϕ
n
)
d
Ω
=
0
⋮
∫
Ω
w
t
3
⋅
R
(
c
1
,
c
2
,
⋯
,
ϕ
1
,
ϕ
2
,
⋯
,
ϕ
n
)
d
Ω
=
0
\int_{\Omega} w_{t1}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0 \\ \int_{\Omega} w_{t2}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0 \\ \vdots \\ \int_{\Omega} w_{t3}\cdot R(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega=0
∫Ωwt1⋅R(c1,c2,⋯,ϕ1,ϕ2,⋯,ϕn)dΩ=0∫Ωwt2⋅R(c1,c2,⋯,ϕ1,ϕ2,⋯,ϕn)dΩ=0⋮∫Ωwt3⋅R(c1,c2,⋯,ϕ1,ϕ2,⋯,ϕn)dΩ=0
其中,
w
t
1
,
w
t
2
⋯
,
w
t
n
w_{t1},w_{t2}\cdots,w_{tn}
wt1,wt2⋯,wtn为权函数。
Galerkin 加权残值法
如果将权函数 w t 1 , w t 2 ⋯ , w t n w_{t1},w_{t2}\cdots,w_{tn} wt1,wt2⋯,wtn取 ϕ 1 , ϕ 2 , ⋯ , ϕ n \phi_1,\phi_2,\cdots,\phi_{n} ϕ1,ϕ2,⋯,ϕn,则该方法称为Galerkin加权残值方法。
对于简支梁弯曲问题,可将试函数
v
^
(
x
)
\hat{v}(x)
v^(x)取为,注意:此处 试函数需满足边界条件
v
^
(
x
)
=
c
1
ϕ
1
=
c
1
⋅
sin
π
x
l
\hat{v}(x)=c_{1}\phi_{1}=c_{1} \cdot \sin{\frac{\pi x}{l}}
v^(x)=c1ϕ1=c1⋅sinlπx
残差为
R
=
E
I
d
4
(
c
1
ϕ
1
(
x
)
)
d
x
4
−
p
0
ˉ
≠
0
R=EI\frac{\mathrm{d}^4(c_{1}\phi_{1}(x))}{\mathrm{d}x^4}-\bar{p_{0}}\neq0
R=EIdx4d4(c1ϕ1(x))−p0ˉ=0
带入式(4),求解得
c
1
=
4
l
4
π
E
I
p
0
ˉ
c_{1}=\frac{4l^{4}}{\pi EI}\bar{p_{0}}
c1=πEI4l4p0ˉ
则最终的结果为:
v
^
(
x
)
=
4
l
4
π
E
I
p
0
ˉ
s
i
n
π
x
l
\hat{v}(x)=\frac{4l^{4}}{\pi EI}\bar{p_{0}}sin{\frac{\pi x}{l}}
v^(x)=πEI4l4p0ˉsinlπx
若提高精度,使
v
^
2
(
x
)
=
c
1
ϕ
1
+
c
2
ϕ
2
=
c
1
⋅
sin
π
x
l
+
c
2
⋅
sin
3
π
x
l
\hat{v}_2(x)=c_{1}\phi_{1}+c_{2}\phi_{2}=c_{1} \cdot \sin{\frac{\pi x}{l}}+c_{2} \cdot \sin{\frac{3\pi x}{l}}
v^2(x)=c1ϕ1+c2ϕ2=c1⋅sinlπx+c2⋅sinl3πx
带入,可以解出待定系数,
c
1
=
4
l
4
p
ˉ
0
π
5
E
I
,
c
2
=
4
l
4
p
ˉ
0
243
π
5
E
I
c_1=\frac{4l^4\bar{p}_{0}}{\pi ^{5}EI}, c_2=\frac{4l^4\bar{p}_{0}}{243\pi ^{5}EI}
c1=π5EI4l4pˉ0,c2=243π5EI4l4pˉ0
残值最小二乘法
同样,设有一个试函数满足所有的边界条件,将其带入原始方程,则必定有残差值R,存在
c
1
,
c
2
⋯
,
c
n
c_1,c_2\cdots,c_n
c1,c2⋯,cn,使得残差的平方加权积分取极小值,即
m
i
n
[
E
r
r
=
∫
Ω
w
t
⋅
R
2
(
c
1
,
c
2
,
⋯
,
ϕ
1
,
ϕ
2
,
⋯
,
ϕ
n
)
d
Ω
]
min[E_{rr}=\int_{\Omega}w_{t}\cdot R^2(c_{1},c_{2},\cdots,\phi_{1},\phi_{2},\cdots,\phi_{n})\mathrm{d}\Omega]
min[Err=∫Ωwt⋅R2(c1,c2,⋯,ϕ1,ϕ2,⋯,ϕn)dΩ]
其中,
w
t
w_{t}
wt为权函数,一般取1,将式(16)取极值,有
∂
E
r
r
∂
c
1
=
0
∂
E
r
r
∂
c
2
=
0
⋮
∂
E
r
r
∂
c
3
=
0
\frac{\partial{E_{rr}}}{\partial{c_{1}}}=0 \\ \frac{\partial{E_{rr}}}{\partial{c_{2}}}=0 \\ \vdots \\ \frac{\partial{E_{rr}}}{\partial{c_{3}}}=0
∂c1∂Err=0∂c2∂Err=0⋮∂c3∂Err=0
通过求解可以得出试函数的待定系数。
特点
-
试函数需要满足所有的边界条件,即位移边界条件与力边界条件;
-
积分中试函数的最高阶导数较高(对于梁的弯曲问题,导数为4阶,对于一般弹性问题,导数为2阶),因此对试函数的连续性要求较高;
-
整个方法为计算一个几何域的积分
-
通过求取积分问题的最小值==(即误差最小)==,将原方程的求解变为线性方程组的求解。
2.虚功原理、最小势能原理
加权残值法对试函数连续性的要求过高,以下方法可以在只满足位移边界条件的同时,放松连续性的要求。
虚功原理
假想: 在平衡力系上作用微小的扰动==(不影响原平衡条件)==,且外力作用的位置产生了微小的位移,该位移称为虚位移
**弹性力学中的虚功原理:**在外力作用下处于平衡状态的变形体,当给物体以微小虚位移时,外力所做的总功等于物体的总虚应变能(即应力在由虚位移产生的虚应变上所做的功)。
梁弯曲求解
设满足边界条件的位移场为:
v
^
(
x
)
=
c
1
sin
π
x
l
\hat{v}(x)=c_{1}\sin{\frac{\pi x}{l}}
v^(x)=c1sinlπx
其中,
c
1
c_1
c1为待定系数,则虚位移场为
δ
v
^
(
x
)
=
δ
c
1
sin
π
x
l
\delta \hat{v}(x)=\delta c_{1}\sin{\frac{\pi x}{l}}
δv^(x)=δc1sinlπx
则,该梁的虚应变能为(注意:虚应变能没有1/2)
δ
U
=
∫
Ω
σ
x
δ
ε
x
d
Ω
=
∫
0
l
∫
A
E
⋅
ε
x
δ
ε
x
d
A
⋅
d
x
=
E
I
l
2
(
π
l
)
4
⋅
c
1
⋅
δ
c
1
\delta U=\int_{\Omega}{\sigma_{x}\delta\varepsilon_{x}}\mathrm{d}\Omega\\ =\int_0^l \int_{A}E\cdot \varepsilon_{x}\delta\varepsilon_{x}\mathrm{d}A\cdot\mathrm{d}x \\ =\frac{EIl}{2}({\frac{\pi}{l}})^{4}\cdot c_{1}\cdot \delta c_1
δU=∫ΩσxδεxdΩ=∫0l∫AE⋅εxδεxdA⋅dx=2EIl(lπ)4⋅c1⋅δc1
外力虚功为:
δ
W
=
∫
0
l
p
ˉ
0
δ
v
^
d
x
\delta W=\int_{0}^{l}\bar{p}_{0}\delta \hat{v}\mathrm{d}x
δW=∫0lpˉ0δv^dx
由虚功原理,有
δ
W
=
δ
U
\delta W=\delta U
δW=δU
可以解出 c 1 c_1 c1.
最小势能原理
在所有满足位移边界条件的许可位移场中,真实的位移场
u
^
i
\hat{u}_{i}
u^i使得物体的总势能取得最小值,即
m
i
n
[
Π
(
u
^
i
)
=
U
−
W
]
min [\Pi(\hat{u}_{i})=U-W]
min[Π(u^i)=U−W]
其中
U
=
1
2
∫
Ω
σ
x
⋅
ε
x
⋅
d
Ω
U=\frac{1}{2}\int_{\Omega}\sigma_x \cdot \varepsilon_{x}\cdot \mathrm{d}\Omega
U=21∫Ωσx⋅εx⋅dΩ;
W
=
∫
0
l
p
ˉ
0
⋅
v
^
(
x
)
d
x
W=\int_{0}^{l}\bar{p}_{0}\cdot \hat{v}(x)\mathrm{d}x
W=∫0lpˉ0⋅v^(x)dx,
利用偏导为零可以求得待定系数。