有限元思想简介

    一、有限元思想   

        有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处互相连接,称为这些连接点为节点

      离散化的组合体与真实弹性的区别在于,组合体中单元与单元之间连接除了节点外在无任何关联。但是这种连接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠,单元之间只能通过节点来传递内力。通过节点来传递的内力称为节点力,作用在节点上的载荷称为节点载荷。当连续体受到外力的作用发生变形时,组成它的各个单元也将发生变形,因而个节点要产生不同程度位移,这种位移称为节点位移

        在有限元中,常以节点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似的表示单元内位移的分布规律,在利用力学理论,建立节点力与位移之间的力学特性关系,得到一组以节点位移为未知量的代数方程,从而求解节点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着单元尺寸的缩小,增加求解域内单元的数目,解的近似程度将不断改进,近似解最终收敛于精确解。

二、有限元计算步骤

1)连续体的离散化;将连续体的形状选择最能完整地描述连续体形状的单元。常见的单元有:杆单元、梁单元、三角形单元、矩形单元、四边形单元等。单元划分完毕后,要将全部单元和节点按一定顺序编号,每个单元所受的载荷均按静力等效原理移植到节点上,并在位移受约束的节点上根据实际情况设置约束条件。

2)单元分析。所谓单元分析,就是建立各个单元的节点位移与节点力之间的关系式。

3)整体分析:整体分析是对各个单元组成的整体进行分析。它的目的是要建立起一个线性方程组,来揭示节点载荷与节点位移之间的关系,从而来求解节点位移。利用节点的力平衡和变形协调条件来建立起整个连续体的节点力和节点位移得关系式。

三、有限元分析概念

有限元分析是使用有限元法,以计算机为工具,对实际物理问题进行模拟求解的过程。

有限元分析是利用数学近似的方法对真实物理系统进行模拟求解的过程,利用简单而又相互作用的元素就可以用有限元数量的未知量去逼近无限未知的真实系统。

下面阐述自由度的概念,不同的场对自由度的定义不同。

下面是对单元和节点的叙述

DOFS单元自由度数

书名:有限元方法的数学基础 图书编号:1040680 出版社:科学出版社 定价:20.0 ISBN:703013478 作者:王烈衡 出版日期:2005-06-30 版次:1 开本:大32开 简介: 本书为《中国科学院研究生教学丛书》之一。 本书是作者最近十多年为中国科学院研究生院、北京大学以及中国科学技术大学(合肥)研究生开设课程的讲稿基础上发展起来的,试图提供有限元方法比较完整的数学基础,主要包括变分原理、Sobolev空间、椭圆边值问题、有限元离散、协调有限元方法的误差分析、数值积分影响、等参数有限元、非协调有限元、混合有限元法、多重网格法、多水平方法、区域分解法等内容。本书内容全面,材料丰富,深入浅出,用尽可能初等的方法论述一些理论结果。 本书适合高等院校计算数学和应用数学专业的研究生及高年级本科生,也可作为有兴趣于数学理论方面的工程师的参考书。 目录: 引论第1章 变分原理1·1 可微二次凸泛函的极小化问题1·2 不可微凸泛函的极小化问题1·3 多元函数微分学第2章 Sobolev空间2·1 Lebesgue积分2·2 广义(弱)导数2·3 Sobolev空间2·4 嵌入定理2·5 迹定理2·6 Sobolev空间中的Green公式2·7 等价模定理第3章 椭圆边值问题3·1 阶椭圆型方程边值问题3·2 线弹性边值问题3·3 变分不等式3·4 四阶椭圆边值问题第4章 有限元离散4·1 有限元离散的基本特性4·2 三角形单元4·3 矩形单元4·4 四阶问题的协调有限单元4·5 记号及一般概念第5章 协调有限元方法的误差分析5·1 收敛性的一般考虑5·2 Sobolev空间中的分片多项式插值5·3 多边形区域上二阶问题的有限元误差5·4 有限元空间中的反不等式5·5 有限元方法的非整数阶误差估计5·6 非光滑函数的插值(C1ément插值)第6章 数值积分影响,等参数有限元6·1 有限元方法中的数值积分6·2 数值积分下的抽象误差估计6·3 相容误差估计6·4 曲边区域的有限元逼近6·5 等参数有限元6·6 等参元的插值误差6·7 等参元的误差估计第7章 非协调有限元7·1 抽象误差估计7·2 二阶问题的非协调元7·3 阶问题的非协调元7·4 平面弹性问题的有限元方法及闭锁问题第8章 混合有限元法8·1 混合变分形式8·2 Babuska-Brezzi理论8·3 阶椭圆问题的混合有限元方法8·4 Stokes问题的混合有限元方法第9章 多重网格法9·1 多重网格法的思想9·2 W循环多重网格法的收敛性9·3 V循环多重网格法的收敛性9·4 套迭代及其工作量的估计9·5 瀑布型多重网格法第10章 多水平方法10·1 分层基方法10·2 BPX多水平方法第11章 区域分解法11·1 经典Schwarz交替法11·2 两水平加性Schwarz方法11·3 非重叠型Schwarz方法11·4 D-N交替法11·5 子结构方法参考文献
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值