一、有限元思想
有限元法是把要分析的连续体假想地分割成有限个单元所组成的组合体,简称离散化。这些单元仅在顶角处互相连接,称为这些连接点为节点。
离散化的组合体与真实弹性的区别在于,组合体中单元与单元之间连接除了节点外在无任何关联。但是这种连接要满足变形协调条件,即不能出现裂缝,也不允许发生重叠,单元之间只能通过节点来传递内力。通过节点来传递的内力称为节点力,作用在节点上的载荷称为节点载荷。当连续体受到外力的作用发生变形时,组成它的各个单元也将发生变形,因而个节点要产生不同程度位移,这种位移称为节点位移。
在有限元中,常以节点位移作为基本未知量。并对每个单元根据分块近似的思想,假设一个简单的函数近似的表示单元内位移的分布规律,在利用力学理论,建立节点力与位移之间的力学特性关系,得到一组以节点位移为未知量的代数方程,从而求解节点的位移分量。然后利用插值函数确定单元集合体上的场函数。显然,如果单元满足问题的收敛性要求,那么随着单元尺寸的缩小,增加求解域内单元的数目,解的近似程度将不断改进,近似解最终收敛于精确解。
二、有限元计算步骤
1)连续体的离散化;将连续体的形状选择最能完整地描述连续体形状的单元。常见的单元有:杆单元、梁单元、三角形单元、矩形单元、四边形单元等。单元划分完毕后,要将全部单元和节点按一定顺序编号,每个单元所受的载荷均按静力等效原理移植到节点上,并在位移受约束的节点上根据实际情况设置约束条件。
2)单元分析。所谓单元分析,就是建立各个单元的节点位移与节点力之间的关系式。
3)整体分析:整体分析是对各个单元组成的整体进行分析。它的目的是要建立起一个线性方程组,来揭示节点载荷与节点位移之间的关系,从而来求解节点位移。利用节点的力平衡和变形协调条件来建立起整个连续体的节点力和节点位移得关系式。
三、有限元分析概念
有限元分析是使用有限元法,以计算机为工具,对实际物理问题进行模拟求解的过程。
有限元分析是利用数学近似的方法对真实物理系统进行模拟求解的过程,利用简单而又相互作用的元素就可以用有限元数量的未知量去逼近无限未知的真实系统。
下面阐述自由度的概念,不同的场对自由度的定义不同。
下面是对单元和节点的叙述
DOFS单元自由度数