Yolov8模型修改后,进行训练时Box的精度P、召回率R、mAP等值均为0的问题

Yolov8网络提供了一个全新的 SOTA 模型,最近很多小伙伴在研究这个网络,在进行网络修改以及运行时可能会出现一些问题,不知道下面我遇到的这个坑你是否也踩过。

       在用新版本的yolov8做模型训练时,如果仅仅是运行源代码,而不做对网络的结构的修改,直接用yolov8 网络进行训练,估计不会遇到这问题,但是如果修改了网络主干等结构,在训练时会出现,Box的精度P、召回率R、mAP等值均为0的问题。如下图所示:

解决方案:

       找到ultralytics-main\ultralytics\yolo\engine\trainer.py,Ctrl+F搜索self.amp,这里出了问题,我们只需将自动混合精度训练参数--amp设置为False即可。然而这个参数的具体设置在ultralytics-main\ultralytics\yolo\cfg\ default.yaml文件中,找到amp参数,将其设置为False,再进行模型训练时就不会出现P、R、map均为0了。

       当然,针对具体不同情况,可能并不都适用。希望我的建议对大家有用,有不同见解欢迎大家讨论,谢谢!

<think>嗯,用户问的是如何改进YOLO训练模型。首先,我需要回忆一下YOLO的基本结构和训练流程。YOLO(You Only Look Once)是一种单阶段的物体检测模型,以速度快著称。用户可能在使用YOLO遇到了问题,比如检测精度不够或者速度不满足需求,想要进行调整。 首先,用户可能不了解YOLO的不同版本,比如YOLOv3、v4、v5,以及最近的v7、v8YOLO-NAS。不同版本在模型结构和性能上有所不同,所以建议用户根据需求选择合适的版本。比如,如果更看重速度,可能选择YOLOv5s;如果需要更高精度,可能选择YOLOv5x或者YOLO-NAS。 然后是数据方面的改进。数据质量对模型性能至关重要。用户可能需要检查数据集是否平衡,各类别样本量是否足够,标注是否正确。数据增强是常用的方法,比如YOLO自带的Mosaic增强,或者其他的几何变换、颜色调整等。另外,添加更多真实场景的数据或者生成合成数据也可能有帮助。 模型结构调整方面,修改Anchor boxes是关键。YOLO使用聚类得到的anchors,如果数据集目标尺寸差异大,重新聚类生成适合的anchors能提升检测效果。网络深度和宽度的调整,比如使用更深的网络或者更宽的通道数,可能提高精度,但也会影响速度。此外,更换主干网络,比如用EfficientNet代替原来的CSPDarknet,可能带来更好的特征提取能力。 损失函数优化也是一个方向。YOLO的损失包括分类、定位和置信度损失。调整它们的权重,或者使用CIoU、DIoU代替传统的IoU损失,可能改善定位精度。引入Focal Loss可以缓解类别不平衡问题训练策略方面,学习率调度和优化器的选择很重要。使用余弦退火或预热学习率可能提升收敛效果。优化器如AdamW或SGD配合动量,需要根据情况选择。冻结训练和微调策略,尤其是在使用预训练模型,分阶段解冻层可以加快训练。多尺度训练能增强模型对不同尺寸目标的适应能力。 后处理优化,比如调整NMS的阈值,或者使用Soft-NMS、DIoU-NMS代替传统NMS,可能减少重叠目标的漏检。置信度阈值也需要根据实际情况调整,平衡漏检和误检。 部署优化方面,模型剪枝和量化可以减小模型体积,提高推理速度。知识蒸馏技术用大模型指导小模型训练,可能在不显著降精度的情况下提升速度。 最后,用户可能需要具体的操作步骤,比如如何修改配置文件,调整数据增强参数,或者重新聚类anchors。需要提醒用户注意版本差异,不同YOLO版本的实现可能不同,修改前要查阅文档。另外,实验逐步调整并记录结果,对比分析效果,避免同改太多参数导致问题难以排查。 总结起来,改进YOLO模型需要从数据、模型结构、损失函数、训练策略、后处理等多方面入手,用户应根据具体需求和问题选择合适的改进方法,并系统地实验验证。</think>以下是对YOLO训练模型改进的逐步指南,从数据、模型结构、训练策略等关键角度展开: --- ### 一、数据层面的改进 1. **数据质量优化** - **标注检查**:使用工具(如LabelImg、CVAT)验证边界框的精确性,避免漏标或错标。 - **类别平衡**:若某些类别样本过少,可通过过采样(复制数据)或数据增强补充。 - **难例挖掘**:在训练中自动识别困难样本(如小目标、遮挡目标)并针对性增强。 2. **数据增强策略** - **基础增强**:启用YOLO内置的Mosaic(四图拼接)、MixUp(图像混合)、HSV调整(色相、饱和度、亮度)。 - **高级增强**:添加随机旋转(`degrees=45`)、透视变换(`perspective=0.001`)、运动模糊模拟动态场景。 - **小目标增强**:对图像局部区域进行复制粘贴(Copy-Paste),提升小目标检测能力。 3. **数据集扩展** - **合成数据**:使用GAN生成逼真图像(如StyleGAN),或用3D引擎(Blender、Unity)渲染虚拟场景。 - **领域适配**:若测试环境光照复杂,可添加光照变换增强(如光、过曝、阴影模拟)。 --- ### 二、模型结构改进 1. **Anchor Box调整** - **自动聚类**:用K-means或遗传算法对训练集的标注框聚类,生成适配当前数据的anchors。 - 示例代码(YOLOv5): ```bash python utils/autoanchor.py --data your_data.yaml ``` 2. **主干网络替换** - **轻量化**:将CSPDarknet替换为MobileNetV3、ShuffleNetV2(适合移动端)。 - **高性能**:改用ConvNeXt、Swin Transformer(需更多计算资源)。 3. **特征融合优化** - **改进FPN**:在PANet基础上添加BiFPN(加权双向特征金字塔),提升多尺度特征融合效率。 - **注意力机制**:在主干或检测头插入SE、CBAM、CA等注意力模块,增强关键特征响应。 --- ### 三、损失函数优化 1. **定位损失改进** - 将IoU Loss替换为CIoU Loss(考虑中心点距离、宽高比): $$ \text{CIoU} = \text{IoU} - \frac{\rho^2(b_{pred}, b_{gt})}{c^2} - \alpha v $$ 其中 $v$ 衡量宽高比一致性,$\alpha$ 为权重系数。 2. **分类损失改进** - 使用Focal Loss缓解类别不平衡: $$ FL(p_t) = -\alpha_t (1-p_t)^\gamma \log(p_t) $$ 设置 $\gamma=2$(抑制简单样本梯度),$\alpha=0.25$(平衡正负样本)。 --- ### 四、训练策略调优 1. **学习率调度** - **预热阶段**:前3个epoch线性增加学习率,避免初始梯度震荡。 - **余弦退火**:使用`--cos-lr`参数,周期性地重置学习率以跳出局部最优。 2. **优化器选择** - **SGD**(默认):`lr0=0.01`, `momentum=0.937`, `weight_decay=0.0005` - **AdamW**:更适合小数据集或复杂模型,但可能需调整学习率(如`lr0=0.001`) 3. **多尺度训练** - 开启`--multi-scale`,每10个batch随机缩放图像(如640×640 → 320×320 ~ 960×960)。 --- ### 五、推理后处理优化 1. **NMS改进** - 将传统NMS替换为DIoU-NMS,考虑边界框中心点距离: $$ \text{DIoU} = \text{IoU} - \frac{\rho^2(b_i, b_j)}{c^2} $$ - 调整`iou_thres`(如从0.45→0.5)平衡召回率与误检。 2. **自适应阈值** - 根据类别设置动态置信度阈值(如车辆:0.6,行人:0.4)。 --- ### 六、模型压缩与部署 1. **剪枝** - 使用通道剪枝(Channel Pruning)移除冗余卷积核: ```python import torch_pruning as tp strategy = tp.strategy.L1Strategy() DG = tp.DependencyGraph(model) indices = strategy(model.conv.weight, amount=0.3) pruned_model = DG.prune(indices) ``` 2. **量化** - 导出ONNX后使用TensorRT进行FP16/INT8量化: ```bash trtexec --onnx=yolov5s.onnx --fp16 --saveEngine=yolov5s_fp16.engine ``` --- ### 七、实验记录与分析 1. **可视化工具** - 使用WandB或TensorBoard监控训练过程,分析类别AP(Average Precision)、混淆矩阵。 - 对验证集结果可视化,定位高频错误类型(如误检、漏检)。 2. **消融实验** - 每次仅修改一个变量(如更换损失函数),对比mAP和FPS变化。 --- **注意事项**: 1. YOLO版本差异:不同版本(v3/v5/v8)的配置文件格式不同,修改前需查阅官方文档。 2. 硬件限制:模型越大(如YOLOv5x)显存消耗越高,需匹配GPU容量。 3. 过拟合监控:若验证集指标停滞但训练集损失下降,可能需减少增强强度或添加Dropout。 改进示例(YOLOv5配置文件`yolov5s.yaml`片段): ```yaml # 替换注意力模块 backbone: [[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2 [-1, 1, CBAM, [128]], # 1-P2/4 [-1, 3, C3, [128]], ... ``` 通过系统性调整和实验验证,可逐步优化YOLO模型性能。
评论 28
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zgy886688

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值