Pytorch和Tensorflow在相同数据规模规模下的KNN(K-NearestNeighbor)算法中的运算速度对比

本文对比了Pytorch和Tensorflow在相同数据规模下的KNN(K-NearestNeighbor)算法运算速度。在CPU环境下,Tensorflow表现更快,而两者准确率相当。内容包括KNN算法的基本原理、四个主要步骤以及在MNIST数据集上的Pytorch和Tensorflow实现代码展示。
摘要由CSDN通过智能技术生成

Pytorch和Tensorflow在相同数据规模规模下的KNN(K-NearestNeighbor)算法中的运算速度对比

今天介绍一下比较简单的机器学习算法KNN算法。它最初由 Cover和Hart于1968年提出,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。

KNN算法基本原理

该方法的思路非常简单直观:离已知的某一个类中的所有点的平均距离距离最小的,就将这个点归为该类。
该方法的不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,会占用很大的时间与内存。

KNN分类算法包括以下4个步骤:

①准备数据,对数据进行预处理
②计算测试样本点(也就是待分类点)到其他每个样本点的距离
③对每个距离进行排序,然后选择出距离最小的点
④将测试点归类到这个最小距离的类中。

本文中用的是L2距离实现:
L 2 = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 L2=\sqrt{(x_2-x1)^2+(y_2-y_1)^2} L2=(x2x1)2+(y2y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值