《神经网络与机器学习》学习日记 1
第一章 绪论
(引用部分大部分是自己看书写下的笔记,敲上以方便后续理解)
1. Machine Learning(机器学习 ML)
1.1 ML model
ML model一般包括两个方面:特征处理、学习并构建预测函数。
特征处理 = 数据预处理 + 特征提取 + 特征转换
问题所在
ML实际操作中,特征处理基于人工干预,利用人类的经验来选取好的特征。
结果
传统ML中,预测函数的构建才是ML的重点。
2. 表示学习
2.1 定义
可以自动学习出有效特征并提高 ML model 性能。
那么怎么定义有效特征?
在特征众多的前提下,须得知最牛的特征,或者说某种程度上较突出的特征,并将model建在这类特征的基础上。
2.2 目的
用于降低ML model 训练强度,不用训练的过于狠与准确。
2.3 关键
解决语义鸿沟,即输入数据的底层数据和高层语义信息之间的不一致性和差异性。
2.4 两个核心问题
- 何为一个好的表示?
- 如何学习到一个好的表示?
2.5 好的表示
- 表示能力强
- 使后续学习simple 简单高效
- 有一般性,可迁移
2.6 特征表示的两种方式
(解决表示学习的核心问题1)
- 局部表示:即离散表示/符号表示
- 分布式表示
局部表示 vs 分布式表示 ≈ 一维 vs n维(现多为三维)
应用:使用神经网络时,将高维的局部表示空间映射到一个非常低维的分布式表示空间中
3. Deep Learning (深度学习 DL)
3.1 定义
- ML的一个分支
- 前期用于处理表示学习的问题
- 后期越来越多用于处理复杂的推理、决策问题
3.2 目的
(解决表示学习的核心问题2)
需要一种学习方式可以从数据中学习一个“深度模型”,意义为通过学习算法来让模型自动学习出一种好的特征表示,最终提高预测模型的准确率。
DL model 的 深度增加 -->表示能力更强 -->预测能力提高
3.3 深度
原始数据进行非线性特征转换的次数。
if 学习系统=有向图:
深度 = 输入节点到输出节点的最长路径长度
3.4 关键问题
Credit Assignment Problem (贡献度分配问题 CAP)
就是不知道谁在C 谁在划水
解决方式
误差反向传播算法
4. 神经网络(这里指人工神经网络)
定义
一种模仿人脑神经系统的数学模型
在ML中,指由很多人工神经元构成的网络结构模型,这些人工神经元之间的连接强度是可学习的参数。