ubuntu18 CUDA版本降级

用别人的代码训练模型时,由于tensorflow-gpu版本太高,报了很多错,一个个改太麻烦,所以直接降级。tensorflow降级为1.14,与此同时也要换成对应版本的CUDA和cuDNN。

1.tensorflow-gpu降级

pip uninstall tensorflow-gpu
pip install tensorflow-gpu==1.14

2.gcc降级

我的服务器本身好像是gcc10.几,现在降到5.5

cd /usr/bin
sudo rm gcc
sudo ln -s gcc-5 gcc
sudo rm g++
sudo ln -s g++-5 g++

查看gcc和g++版本号,均显示gcc version 5.5则成功

gcc -v
g++ -v

3.降级到CUDA9.2

本身是CUDA10,降到CUDA9.2,我没有卸载本来的CUDA,直接在官网下载下面两个文件,cuda_9.2.148.1_linux.run是补丁。

在这里插入图片描述

sudo sh cuda_9.2.148_396.37_linux.run
sudo sh cuda_9.2.148.1_linux.run

直接按q退出,accept,除了安装NVIDIA驱动选项输入n以外(因为之前已经装过显卡驱动了),其余全部选y,默认location都直接回车。
安装完成后,配置环境变量。在.bashrc末尾export一些东西:

sudo gedit ~/.bashrc
export PATH=/usr/local/cuda-9.2/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-9.2/lib64:$LD_LIBRARY_PATH
export CUDA_HOME="/usr/local/cuda-9.2:$CUDA_HOME"

然后执行source ~/.bashrc

4.安装cuDNN

在官网下载cuDNN7.4.1,选择library for Linux
在这里插入图片描述
解压:

tar -zxvf cudnn-9.2-linux-x64-v7.4.1.5.tgz

将相关文件复制到刚才安装的cuda中:

sudo cp cuda/include/cudnn.h /usr/local/cuda-9.2/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-9.2/lib64/
sudo chmod a+r /usr/local/cuda-9.2/include/cudnn.h
sudo chmod a+r /usr/local/cuda-9.2/lib64/libcudnn*

5.切换到CUDA9.2

cd usr/local
sudo rm -rf cuda #删除之前创建的软链接
sudo ln -s cuda-9.2 cuda #重建软链接

查看当前的cuda和cuDNN版本:

nvcc -V
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述

### CUDA降级方法 对于希望在Ubuntu系统上将CUDA降级至特定版本的情况,操作过程涉及卸载现有版本并安装目标版本。具体而言: 当需要降低CUDA版本时,首先要确保完全移除旧版CUDA及其关联组件。这一步骤至关重要,因为残留文件可能会引发冲突或兼容性问题[^1]。 #### 卸载现有的CUDA版本 使用以下命令可以彻底清除已有的CUDA安装: ```bash sudo apt-get --purge remove "*cublas*" "cuda*" ``` 接着清理可能存在的配置文件和其他残留项: ```bash sudo rm -rf /usr/local/cuda* ``` 最后更新包列表以同步更改: ```bash sudo apt update ``` #### 安装所需版本CUDA 确认要安装的具体CUDA版本后,在NVIDIA官方网站下载对应版本的.run文件或是.deb文件。这里推荐采用官方提供的.deb方式简化安装流程[^4]。 假设目标是安装CUDA 9.0,则可按照如下步骤操作: - 访问[NVIDIA官网](https://developer.nvidia.com/)查找适用于系统的CUDA Toolkit; - 下载完成后打开终端进入保存位置执行安装指令: ```bash sudo dpkg -i cuda-repo-ubuntuXX_YY.YY-1_amd64.deb ``` 其中`XX`代表Ubuntu发行代号(如1804),而`YY.YY`则是具体的CUDA版本号;之后再次刷新软件源索引: ```bash sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntuXX/x86_64/7fa2af80.pub sudo apt-get update ``` 最终通过apt工具完成实际安装工作: ```bash sudo apt-y install cuda=9-0 ``` 注意替换上述命令中的版本参数匹配个人需求。 #### 验证安装成功与否 重启计算机使新设置生效,并利用nvcc编译器测试是否正确加载了所选版本: ```bash nvcc --version ``` 该命令应返回预期的CUDA版本信息。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值