快速切换 CUDA 版本-Windows 系统

今天创建了一个新的CUDA版本11.3,原来是11.8,关于两个版本如何切换做一些记录。总结来看主要就两步:1.将系统变量PATH中现在所需版本的CUDA路径上移到另一个版本前面从而优先使用该版本;2.系统变量CUDA_PATH设置为对应版本的路径(可选但推荐)。配置过程参考的GPU版本pytorch的安装
以下是针对 Windows 系统 切换 CUDA 版本到 11.3 的详细步骤:


1. 调整环境变量优先级

CUDA 版本的选择由环境变量 PATH 中路径的 顺序 决定。系统会优先使用 PATH 列表中 靠前路径 下的 CUDA 工具包。按以下步骤操作:

步骤 1:打开环境变量设置界面
  1. 按下 Win + S,搜索 “编辑系统环境变量”,点击进入。
  2. “系统属性” 窗口中,点击 “环境变量” 按钮。
步骤 2:修改 PATH 变量
  1. “系统变量” 列表中找到 Path,双击编辑。
    在这里插入图片描述

  2. 确保以下两个 CUDA 11.3 的路径 位于 CUDA 11.8 的路径之前

    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\libnvvp
    
    • 使用 “上移” 按钮将 CUDA 11.3 的路径移到 CUDA 11.8 的路径上方。
    • 最终顺序示例: 我的CUDA安装路径进行了修改所以是下图所示。
      在这里插入图片描述
  3. 点击 确定 保存所有窗口。


2. 验证 CUDA 版本切换

方法 1:通过命令行检查
  1. 注意打开新的 命令提示符(重要:旧的终端不会继承新环境变量)。
  2. 执行以下命令验证 CUDA 版本:
    nvcc --version
    
    • 如果输出显示 release 11.3,表示已切换成功。
    • 如果仍显示 11.8,回到步骤 1 检查 PATH 顺序。
方法 2:通过 where 命令检查优先级
where nvcc
  • 输出应首先显示 CUDA 11.3 的 nvcc.exe 路径:
    C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin\nvcc.exe

3. 处理 CUDA_PATH 变量(可选但推荐)

某些程序(如 Visual Studio)会依赖 CUDA_PATH 环境变量。为确保一致性,在使用对应版本的CUDA时,需要改为对应版本的路径:

  1. 环境变量 界面中,检查是否存在 CUDA_PATH
    • 如果存在且指向 CUDA 11.8(如 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8),将其值改为 CUDA 11.3 的路径:
      C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3
    • 如果不存在,可手动新建 CUDA_PATH 变量并指向 CUDA 11.3。
      在这里插入图片描述

4. 临时切换 CUDA 版本(无需修改系统变量)

如果仅需在 当前终端会话 中使用 CUDA 11.3,可直接在命令行临时设置路径优先级:

# 临时将 CUDA 11.3 的路径添加到最前面
set PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3\libnvvp;%PATH%
  • 此方式退出终端后失效,适合快速测试。

5. 深度学习框架适配

切换 CUDA 版本后,需确保深度学习框架(如 PyTorch/TensorFlow)链接到正确的 CUDA 11.3 库:

  1. PyTorch
    安装与 CUDA 11.3 兼容的版本(如 torch==1.12.1+cu113):
    pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
    
  2. TensorFlow
    安装 tensorflow-gpu==2.6.0(对应 CUDA 11.3):
    pip install tensorflow-gpu==2.6.0
    

6. 常见问题解决

问题 1:切换后 nvidia-smi 显示的 CUDA 版本仍是 11.8
  • 原因nvidia-smi 显示的是驱动支持的 最高 CUDA 版本,与当前使用的 CUDA 工具包版本无关。
  • 解决方案:忽略此信息,以 nvcc --version 为准。
问题 2:程序仍调用 CUDA 11.8 的库
  • 检查点
    1. 确保 PATH 中 CUDA 11.3 路径在 11.8 之前。
    2. 重启所有依赖 CUDA 的程序(如 IDE、Jupyter Notebook)。
    3. 清理程序缓存(如 PyTorch 的 __pycache__)。

总结

通过调整 PATH 顺序和 CUDA_PATH,你可以无缝切换 CUDA 11.3 和 11.8。记得验证关键命令的输出,并确保深度学习框架与 CUDA 版本匹配。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值