算法(二)分析算法

本文介绍了计算时间的渐进表示,包括渐进上界、渐进下界和渐进确信界的定义,以及多项式时间与指数时间算法的区别。通过实例说明了如何运用O符号进行时间复杂度比较,并演示了证明技巧,如求最大值和构造关系式来展示算法效率。
摘要由CSDN通过智能技术生成

第二章只有一个知识点

1 计算时间的渐进表示

1.1 定义

记住这几个定义,以后的整明全靠这些定义了。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
这几个分别表示,g(x)是f(x)的:渐进上界、渐进下界、渐进确信界。(考试说这几个词知道是啥就行)

这个定理说是定理,不如说就是个例子而已…
在这里插入图片描述

1.2 O的时间比较

从计算时间上把算法分为两类:

多项式时间算法:
在这里插入图片描述
指数时间算法:
在这里插入图片描述
这里有一道考试题我得去问一下再更新。

1.3 证明

在这里插入图片描述
考试真题里有一道很像的,不过是把O换成Ω,max换成min而已,思路应该一样的。

幸好我已经有心理预期,这里f’(n)是另一个函数而已,你可以把它看成F(n),不是导数

总体证明过程就是:
1.p(n)=max{f(n),g(n)}(看题里是要求什么)
2.设两个函数F(n)=O(f(n))和G(n)=O(g(n))
3.F(n)+G(n)分别通过定义展开得到与(c1+c2) ∗ * p(n)的关系
4.c3=c1+c2,n3=max{n1,n2}(这个也是根据题来的),得到F(n)+G(n)与c3 ∗ * p(n)的关系

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值