机器学习实战
文章平均质量分 87
AELee_
这个作者很懒,什么都没留下…
展开
-
机器学习实战(4):决策树&集成学习&随机森林
4.1 训练和可视化决策树可以将决策树理解成一个判断二叉树我们继续用花的数据集,训练一个决策树。import numpy as npfrom sklearn.datasets import load_irisfrom sklearn.tree import DecisionTreeClassifieriris = load_iris()X = iris["data"][:, 2:]y = iris.targettree_clf = DecisionTreeClassifier(ma原创 2021-03-17 10:52:18 · 651 阅读 · 0 评论 -
机器学习实战(1):分类
机器学习实战(1)分类参考书籍:Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Second Edition编译器:jupyter notebook3.1 MNISTMNIST数据集是一组数字图片,相当于机器学习的“hello world”,其下载内容是一个类字典结构下载数据集from sklear原创 2021-02-28 20:10:00 · 2006 阅读 · 8 评论 -
机器学习实战(2):训练模型
参考书籍:Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Second Edition;机器学习 周志华编译器:jupyter notebook本文章涉及到的西瓜书中的公式不做推导和说明4.1 线性回归最终的多元线性回归方程是:接下来用θ代替图中的β(没找到θ的图)生成一组线性数据测试这个公式原创 2021-03-01 14:36:04 · 1134 阅读 · 3 评论 -
机器学习实战(3):支持向量机
5.1 线性SVM分类硬间隔如上一部分末尾的花数据集,两个类可以轻松用一条直线隔开。SVM分类器的决策边界可以尽可能的远离了最近的训练实例你也可以称其为大间隔分类。它对特征缩放会特别敏感。软间隔但是有可能有一部分的点不那么尽如人意存在异常值,这时候我们就要用软间隔,设定一个超参数C,这种情况下C从低到高会使模型从欠拟合到过拟合。我们在这里使用花数据集,进行特征缩放后训练SVM模型(C=1)import numpy as npfrom sklearn import datasetsfro原创 2021-03-16 15:26:40 · 244 阅读 · 0 评论