归并排序
思路:
1、[L,R] => [L,mid],[mid+1,R]
2、递归排序[L,mid]和[mid+1,R]
3、归并,将左右两个有序序列合并成一个有序序列
习题1 归并排序
给定你一个长度为 n 的整数数列。
请你使用归并排序对这个数列按照从小到大进行排序。
并将排好序的数列按顺序输出。
输入格式
输入共两行,第一行包含整数 n。
第二行包含 n 个整数(所有整数均在 1∼109 范围内),表示整个数列。
输出格式
输出共一行,包含 n 个整数,表示排好序的数列。
数据范围
1≤n≤100000
输入样例:
5
3 1 2 4 5
输出样例:
1 2 3 4 5
代码:
#include<iostream>
using namespace std;
const int N = 100010;
int n;
int q[N],t[N];
void merge_sort(int l,int r){
if(l >= r) return;
int mid = (l + r) / 2;
merge_sort(l,mid);
merge_sort(mid + 1,r);
int k = 0,i = l,j=mid+1;
while(i <= mid && j <= r){
if(q[i] <= q[j]){
t[k++] = q[i++];
}else{
t[k++] = q[j++];
}
}
while(i <= mid) t[k++] = q[i++];
while(j <= r) t[k++] = q[j++];
for(int i = l,j = 0; i <= r;i++,j++) q[i] = t[j];
}
int main(){
cin >> n;
for(int i = 0; i < n; i++){
cin >> q[i];
}
merge_sort(0,n-1);
for(int i = 0; i < n; i++){
cout << q[i] <<" ";
}
}
习题2 逆序对
思路
给定一个长度为 n 的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<j 且 a[i]>a[j],则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n,表示数列的长度。
第二行包含 n 个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1≤n≤100000,
数列中的元素的取值范围 [1,109]。
输入样例:
6
2 3 4 5 6 1
输出样例:
5
代码:
#include<iostream>
using namespace std;
typedef long long ll;
const int N = 100010;
int n,q[N],t[N];
ll merge_sort(int l,int r){
if(l >= r) return 0;
int mid = (l + r)/2;
ll res = merge_sort(l,mid) + merge_sort(mid+1,r);
int k = 0,i = l,j = mid + 1;
while(i <= mid && j <= r){
if(q[i] <= q[j]){
t[k++] = q[i++];
}else{
t[k++] = q[j++];
res += mid - i + 1;
}
}
while(i <= mid) t[k++] = q[i++];
while(j <= r) t[k++] = q[j++];
for(int i = l,j = 0;i <= r;j++,i++){
q[i] = t[j];
}
return res;
}
int main(){
cin >> n;
for(int i = 0; i < n; i++){
cin >> q[i];
}
cout << merge_sort(0,n-1) << endl;
return 0;
}