Jupiter使用、ipynb文件的保存与打开(基于Ananconda Jupyter Notebook)

打开本地ipynb文件

1、打开anaconda
2、activate相应虚拟环境

activate myenv

3、cd 进入ipynb文件所在的文件夹

cd C:\Users\xianiansi\Downloads

4、输入 jupyter notebook 就可以打开啦

jupyter notebook

会出现以下页面
在这里插入图片描述
浏览器自动弹出网页
在这里插入图片描述

新建一个ipynb文件

用上面的方式打开Jupyter Notebook之后在网页上操作

依次点击new→python3

在这里插入图片描述

其他

2、魔术方法
在jupyter中导入py文件并执行

% load test.py

3、在jupiter中导入其他ipynb文件

import ipynb_importer
from xxx import xxx #这个是ipynb文件
要在Jupyter Notebook上实现聚类分析,你可以使用scikit-learn库中的KMeans算法。首先,你需要导入所需的库和数据集。在这个例子中,我们使用鸢尾花数据集作为示例。你可以使用以下代码导入数据集和KMeans算法: ``` from sklearn.datasets import load_iris from sklearn.cluster import KMeans iris = load_iris() model = KMeans(n_clusters=3).fit(iris.data) ``` 这段代码将加载鸢尾花数据集,并使用KMeans算法将数据分为3个簇。你可以通过`model.labels_`查看聚类结果,每个样本都会被分配一个簇的标签。 如果你想手动实现聚类分析,你可以使用以下代码: ``` from sklearn.datasets import load_iris import numpy as np iris = load_iris() data = iris.data k = 2 # 设置聚类中心 n = len(data) dist = np.zeros(\[n,k+1\]) # 1.选中心 center = data\[:k, :\] center_new = np.zeros(\[k, data.shape\[1\]\]) while True: # 2.求距离 for i in range(n): for j in range(k): dist\[i, j\] = np.sqrt(sum((data\[i, :\] - center\[j, :\])**2)) dist\[i,k\] = np.argmin(dist\[i, :k\]) # 求最小值的位置,并归类 # 4.求新类中心 for i in range(k): index = dist\[:,k\] == i # 找到不同类类索引 center_new\[i, :\] = data\[index, :\].mean(axis=0) # 求同类的新样本中心 # 5.判定结果 if np.all(center == center_new): break center = center_new print(dist) # 查看聚类结果 ``` 这段代码将使用鸢尾花数据集进行聚类分析。你可以根据需要修改`k`的值来设置聚类中心的数量。最后,你可以通过`dist`数组查看聚类结果。 希望这些代码能帮助到你在Jupyter Notebook上实现聚类分析。 #### 引用[.reference_title] - *1* *3* [Python实现 K-Means聚类(jupyter notebook)](https://blog.csdn.net/weixin_52300428/article/details/127463130)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [基于Jupiter Notebook的回归、分类和聚类可视化分析](https://blog.csdn.net/newlw/article/details/122463700)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值