MATLAB 迭代法解方程

本文详细介绍了如何使用MATLAB的牛顿迭代法求解函数f(x)=x^3+4x^2-10的根,并展示了迭代过程和关键代码。通过实例演示了如何设置初值、精度和迭代终止条件,适合初学者理解迭代法在数值计算中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MATLAB 迭代法解方程

1、代码如下:

%%牛顿迭代法解方程
function x=newton_interation(fun,dfun,x0,EPS) %简单牛顿迭代法

%fun即迭代函数,dfun即迭代函数的一阶导数,x0为迭代初值,EPS为精度

x1=x0-fun(x0)/dfun(x0);   %牛顿迭代公式
d=norm(x1-x0);            %计算误差
while d>=EPS
	x0=x1;
	x1=x0-fun(x0)/dfun(x0);
	d=norm(x1-x0);
end
x=x1; %将符合条件的结果输出
 

2、应用demo

假设函数 f(x) 为:
f ( x ) = x 3 + 4   x 2 − 10 f(x)=x^3 + 4\, x^2 - 10 f(x)=x3+4x210
则其一阶导函数为:
f ′ ( x ) = 3   x 2 + 8   x f'(x)=3\,x^2 + 8\, x f(x)=3x2+8x


这里的format long只是使matlab显示小数点的后几位,并不会影响计算结果,没有这一行,matlab只会默认显示显示小数点后5位,导致看不出两个结果的区别。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果壳小旋子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值