#13【CVPR2024】“不确定性不是敌人”:深入剖析多模态融合中的不确定性


📜 Embracing Unimodal Aleatoric Uncertainty for Robust Multimodal Fusion


本文没有源码,适合基础好的读者

🍞 1:研究背景与问题定义

🍫 1.1 多模态融合的黄金承诺与现实落差

在人工智能的迅猛发展浪潮中,多模态学习(Multimodal Learning)扮演着越来越重要的角色。我们日常生活中的感知信息并非单一形式:人类在对话中同时理解对方的语气(语音)、表情(视觉)和措辞(文本);一款智能助手在处理任务时,往往需要联合处理图像、文字、语音、视频等多种模态信息。

基于此,多模态融合(Multimodal Fusion) 作为一种提升AI系统泛化能力、增强表示表达力的手段,受到了广泛关注。其基本目标是:

将不同模态中的互补信息进行整合,以获取更鲁棒、更准确的联合表征。

早期方法主要采用Early Fusion(特征级拼接)或Late Fusion

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果壳小旋子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值