pytorch的dataloader机制深入总结

首先聊一聊个人对于Pytorch为什么使用dataloder这一机制的理解:

在没有用pytorch之前,我读取数据一般时写一个load_data的函数,在里面导入数据,做一些数据预处理,这一部分就显得很烦索。对于深度学习来说,还得考虑batch的读取、GPU的使用、数据增强、数据乱序读取等等,所以需要有一个模块来集中解决这些事情,所以就有了data_loader的机制

本篇文章主要解决以下三个问题:

  1. 如何最快地加载torch官方已有的数据集并生成一个dataloader ?

  2. 如何加载本地的数据集并生成一个dataloader?

  3. 如何添加一些你想要的预处理的操作?

1.直接加载torch官方的数据集

分三步:

  1. 生成实例化对象
  2. 生成dataloader
  3. 从dataloader里读数据

以CIFAR-10数据集为例,演示如何读取这个数据集

import torchvision
import torch

def load_data():
    # 从 torch自带的CIFAR10类 中 生成一个实例化对象trainset
    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, 
                                       			download=True, transform=transform)
    '''
    参数:
    trainset:上一步生成的数据集对象
    batch_size:决定一次取多少份的数据
    shuffle: True则乱序取数据,false则固定顺序取数据
    '''
    trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                                  shuffle=True, num_workers=2)
    return trainloader

def train():
	trainloader=load_data()
    for epoch in range(max_epoch):  
        for i, data in enumerate(trainloader, 0):
            inputs, labels = data
           #这样就能快乐地对data进行操作了

这里具体说说DataLoader里的shuffle这个参数

前面说到shuffle为True则乱序取数据,false则固定顺序读取,且每次读取的起点都相同

我把shuffle设为false,观察每个epoch的前两个batch的图片,发现每个epoch都一样;但是为True的话就不一样

那么它们有什么区别呢?

  1. shuffle设为true的优点:随机梯度下降,一个batch一个batch地学习,假设前面的几个batch影响更大,那么处于数据集前端的数据先验的有更强的影响,随机地打乱顺序就是避免这种数据偏向性
  2. shuffle为false 的优点:在特殊的场景下,假设你要统计所有epoch每个样本的loss变化, 那么你希望每个epoch样本的顺序是固定的,这样比较好编程序

2. 制作自己的数据类

我们首先来分析一下第一部分内容的内部机制:

  1. 首先通过torchvision.datasets.CIFAR10得到数据,里面含有图片序列imgs,和类别标签序列labels。
  2. 在使用 “for i, data in enumerate(trainloader, 0)”时,其实在做的事情是根据索引获取某一个batch的数据,而这与一个函数相关,就是_getitem_, 返回imgs[i] , 和 labels[i].所以上面程序中的data就含有img和label

但是,你会发现它的使用范围非常有限,当你想使用torch没有的数据集或者你想添加一些其他的功能时,你就要学会编写自己的数据类。

制作自己的数据类分为四个步骤:

  1. 继承 torch.utils.data.Dataset,含有一些基本方法和属性
  2. 编写__init__方法:添加一些功能,比如数据切片、数据增强,或者给标签加噪声等等。
  3. 重载__getitem__方法:根据Index返回数据的相应内容,下面代码会给详细解析
  4. 重载__len__方法:返回长度

代码示例:

import torch.utils.data.Dataset as DataSet
#写一个自己的数据类
def MyDataSet(DataSet): #继承DataSet类
    def __init__(self,参数...):
    	#以读取本地数据+数据切片为例
        data=np.loadtxt("traindata0.csv",delimiter=',',dtype=np.float32)
        self.len=data.shape[0]
        self.x_data=torch.from_numpy(data[:,0:-1])
        self.y_data=torch.from_numpy(data[:,[-1]])
    def __getitem__(self,index):
        return self.x_data[index],self.y_data[index]
    	#注意:想返回几个参数自己定,比如我可以return data, self.x_data[index],self.y_data[index]供三个参数,如果你含有颜色,曲率、对应关系等数据,都可以在这里返回
    def __len__(self):
        return self.len
#接下来同上一段代码
#生成实例化对象
#生成dataloader
#从dataloader里读数据

其实,关于__getitem__方法,可以在里面进行数据预处理操作,这时要用到transform模块。

下面给出一个示例

import torchvision.transforms as transforms
transform=transforms.Compose([
	transforms.RandomCrop(32, padding=4),
	transforms.RandomHorizontalFlip(),
	transforms.ToTensor()]) #将多个操作联合起来,关于这些操作的解释,可以参考https://blog.csdn.net/u013925378/article/details/103363232

#向MyDataSet传入参数transform
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,transform,
                                         shuffle=True, num_workers=2)
def MyDataSet(DataSet):
    self.transform=transform
	......
    def __getitem__(self,index):
		img = self.transform(img)
    ......
  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: PyTorch DataLoader是一个用于批量加载数据的工具,它可以帮助用户在训练模型时高效地加载和处理大规模数据集。DataLoader可以根据用户定义的批量大小、采样方法、并行加载等参数来自动将数据集分成小批量,并且可以在GPU上并行加载数据以提高训练效率。 使用DataLoader需要先定义一个数据集对象,然后将其传递给DataLoader。常用的数据集对象包括PyTorch自带的Dataset类和用户自定义的数据集类。在DataLoader中可以指定批量大小、是否打乱数据、并行加载等参数。 下面是一个示例代码: ```python import torch from torch.utils.data import Dataset, DataLoader class MyDataset(Dataset): def __init__(self): self.data = torch.randn(100, 10) self.label = torch.randint(0, 2, size=(100,)) def __getitem__(self, index): return self.data[index], self.label[index] def __len__(self): return len(self.data) dataset = MyDataset() dataloader = DataLoader(dataset, batch_size=10, shuffle=True, num_workers=2) for data, label in dataloader: print(data.shape, label.shape) ``` 在上面的示例中,我们定义了一个自己的数据集类MyDataset,并将其传递给DataLoader。然后指定了批量大小为10,打乱数据,使用2个进程来并行加载数据。在循环中,每次从DataLoader中取出一个批量的数据和标签,并输出它们的形状。 ### 回答2: PyTorchDataLoader是一个用于加载数据的实用工具。它可以帮助我们高效地加载和预处理数据,以供深度学习模型使用。 DataLoader有几个重要参数。首先是dataset,它定义了我们要加载的原始数据集。PyTorch提供了几种内置的数据集类型,也可以自定义数据集。数据集可以是图片、文本、音频等。 另一个重要参数是batch_size,它定义了每个批次中加载的数据样本数量。这是非常重要的,因为深度学习模型通常需要在一个批次上进行并行计算。较大的批次可以提高模型的训练速度,但可能需要更多的内存。 DataLoader还支持多线程数据加载。我们可以使用num_workers参数来指定并行加载数据的线程数。这可以加快数据加载的速度,特别是当数据集很大时。 此外,DataLoader还支持数据的随机打乱。我们可以将shuffle参数设置为True,在每个轮次开始时随机重新排序数据。这对于训练深度学习模型非常重要,因为通过在不同轮次中提供不同样本的顺序,可以增加模型的泛化能力。 在使用DataLoader加载数据后,我们可以通过迭代器的方式逐批次地获取数据样本。每个样本都是一个数据批次,包含了输入数据和对应的标签。 总的来说,PyTorchDataLoader提供了一个简单而强大的工具,用于加载和预处理数据以供深度学习模型使用。它的灵活性和可定制性使得我们可以根据实际需求对数据进行处理,并且能够高效地并行加载数据,提高了训练的速度。 ### 回答3: PyTorchDataLoader是一个用于数据加载和预处理的实用程序类。它可以帮助我们更有效地加载和处理数据集,并将其用于训练和评估深度学习模型。 DataLoader的主要功能包括以下几个方面: 1. 数据加载:DataLoader可以从不同的数据源中加载数据,例如文件系统、内存、数据库等。它接受一个数据集对象作为输入,该数据集对象包含实际的数据和对应的标签。DataLoader可以根据需要将数据集分成小批量加载到内存中,以减少内存占用和加速训练过程。 2. 数据预处理:DataLoader可以在加载数据之前对数据进行各种预处理操作,包括数据增强、标准化、裁剪和缩放等。这些预处理操作可以提高模型的泛化能力和训练效果。 3. 数据迭代:DataLoader将数据集划分为若干个小批量,并提供一个可迭代的对象,使得我们可以使用for循环逐个访问这些小批量。这种迭代方式使得我们能够更方便地按批次处理数据,而无需手动编写批处理循环。 4. 数据并行加载:DataLoader支持在多个CPU核心上并行加载数据,以提高数据加载的效率。它使用多线程和预读取的机制,在一个线程中预先加载数据,而另一个线程处理模型的训练或推理过程。 总之,PyTorchDataLoader是一个方便且高效的工具,帮助我们更好地管理和处理数据集。它可以加速深度学习模型的训练过程,并提供了一种简单而灵活的数据加载和迭代方式。使用DataLoader可以让我们更专注于模型的设计和调优,而无需过多关注数据的处理和加载细节。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值