用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 6 解線性方程組 直接法: Gauss 消去, LU 分解 等

46 篇文章 1 订阅
32 篇文章 1 订阅

“Talk is cheap. Show me the code.”
― Linus Torvalds

老子第41章
上德若谷
大白若辱
大方無隅
大器晚成
大音希聲
大象無形
道隱無名

拳打千遍, 身法自然

“There’s no shortage of remarkable ideas, what’s missing is the will to execute them.” – Seth Godin
「很棒的點子永遠不會匱乏,然而缺少的是執行點子的意志力。」—賽斯.高汀

本系列文章之連結

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 1 Python科學計算第三方庫, 原生指令, 內建模組, 外部模組 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 1.1 scipy.linalg 官網完整列表 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 2 產生 numpy 的 數組, 矩陣點乘 等 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 3 向量與矩陣運算 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 4 函數向量化 function vectorized
    link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 5 矩陣特徵值等不變量計算 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 5.1 矩陣分解的指令 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 6 解線性方程組 直接法: Gauss 消去, LU 等 link

  • 用 Python+Numpy+scipy 執行 Matlab 的矩陣計算 7 解線性方程組 迭代法: Jacobi iterated,Gauss-Seidel 等 link



線性聯立方程組指令求解

給一線性聯立方程組
10    x 1 + − 7    x 2 + 0    x 3 = 7 − 3    x 1 + 2    x 2 + 6    x 3 = 4 5    x 1 + − 1    x 2 + 5    x 3 = 6 \begin{array}{c c} 10 \;x_1 &+& -7 \;x_2 &+& 0 \;x_3 &=& 7 \\ -3 \;x_1 &+& 2 \;x_2 &+& 6 \;x_3 &=& 4 \\ 5 \;x_1 &+& -1 \;x_2 &+& 5 \;x_3 &=& 6 \end{array} 10x13x15x1+++7x22x21x2+++0x36x35x3===746
可以寫下對照之矩陣表法:
A x = B Ax=B Ax=B
( 10 − 7 0 − 3 2 6 5 − 1 5 ) ( x 1 x 2 x 3 ) = ( 7 4 6 ) \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} 7 \\ 4 \\ 6 \\ \end{array} \right)\\ 1035721065x1x2x3=746
where
A = ( 10 − 7 0 − 3 2 6 5 − 1 5 ) x = ( x 1 x 2 x 3 ) B = ( 7 4 6 ) %A = \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right)\\ A = \begin{pmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{pmatrix} \\ x = \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right)\\ B= \left( \begin{array}{c c} 7 \\ 4 \\ 6 \\ \end{array} \right) A=1035721065x=x1x2x3B=746

基於矩陣的表法, 我們可以輕鬆的用數學的觀點來解這個線性方程組, 就是左右兩邊同時乘上 A 的反矩陣:
⇒ \Rightarrow
( 10 − 7 0 − 3 2 6 5 − 1 5 ) − 1 ( 10 − 7 0 − 3 2 6 5 − 1 5 ) ( x 1 x 2 x 3 ) = ( 10 − 7 0 − 3 2 6 5 − 1 5 ) − 1 ( 7 4 6 ) \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right)^{-1} \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right)^{-1} \left( \begin{array}{c c} 7 \\ 4 \\ 6 \\ \end{array} \right)\\ 103572106511035721065x1x2x3=10357210651746
⇒ \Rightarrow
( x 1 x 2 x 3 ) = ( 10 − 7 0 − 3 2 6 5 − 1 5 ) − 1 ( 7 4 6 ) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right)^{-1} \left( \begin{array}{c c} 7 \\ 4 \\ 6 \\ \end{array} \right)\\ x1x2x3=10357210651746

Matlab 的指令

x=A\B

A\B 表示 A − 1 ⋅ B A^{-1}\cdot B A1B

如果Matlab 的指令是 B/A 則表示 B ⋅ A − 1 B \cdot A^{-1} BA1

Python + numpy + scipy 的指令

>>> import numpy as np
>>> A=np.array([[10,-7,0],[-3,2,6],[5,-1,5]])
>>> A
array([[10, -7,  0],
       [-3,  2,  6],
       [ 5, -1,  5]])
>>> B = np.array([7,4,6])
>>> B
array([7, 4, 6])
>>> x=A\B
SyntaxError: unexpected character after line continuation character
>>> from scipy import linalg
>>> x= scipy.linalg.solve(A,B)
>>> x
array([ 0., -1.,  1.])

可以檢查解出之x 是否為解, 計算 Ax 看是否會等於 B

>>> np.dot(A,x)
array([7., 4., 6.])

發現與 B 相等, 解為正確

求解線性聯立方程組演算法之直接法(direct method)

在一般數值分析的書上, 所謂的直接法(direct method), 是相對於迭代法( iterative methods),

迭帶法意指透過同樣的演算程序一直迭帶, 得到越來越精確的解,
直接法就不是逐步逼近, 而是透過一定計算步驟之後就得到精確解, 例如 中學熟知的 Gauss Elimination(高斯消去法), Gauss-Jordan(高斯-喬丹消去法) 等等.

給一線性聯立方程組
a 11    x 1 + a 12    x 2 + a 13    x 3 = b 1 a 21    x 1 + a 22    x 2 + a 23    x 3 = b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} a_{11} \;x_1 &+& a_{12} \;x_2 &+& a_{13} \;x_3 &=& b_{1} \\ a_{21} \;x_1 &+& a_{22} \;x_2 &+& a_{23} \;x_3 &=& b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3
可以寫下對照之矩陣表法:
A x = B Ax=B Ax=B
( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) ( x 1 x 2 x 3 ) = ( b 1 b 2 b 3 ) \left( \begin{array}{c c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1} \\ b_{2} \\ b_{3} \\ \end{array} \right)\\ a11a21a31a12a22a32a13a23a33x1x2x3=b1b2b3

Gauss Elimination 高斯消去法

  • 高斯消去法是用行或列基本運算清掃成上三角矩陣
  • Gauss-Jordan 消去法是用行或列基本運算清掃成對角線矩陣

理論

Gauss Elimination 高斯消去法 就是透過 elementrary row operation(橫行基本運算) 或是 elementrary column operation(直行基本運算) 將 線性聯立方程組的 A A A 矩陣轉成一個(等價)的上三角矩陣(或下三角矩陣也可以)
轉成上三角矩陣後, 線性聯立方程組就很好解了.

A x = B Ax=B Ax=B
( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) ( x 1 x 2 x 3 ) = ( b 1 b 2 b 3 ) \left( \begin{array}{c c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1} \\ b_{2} \\ b_{3} \\ \end{array} \right)\\ a11a21a31a12a22a32a13a23a33x1x2x3=b1b2b3
⟹ 行 列 基 本 運 算 \stackrel{行列基本運算}{\Longrightarrow}
( a 11 ′ a 12 ′ a 13 ′ 0 a 22 ′ a 23 ′ 0 0 a 33 ′ ) ( x 1 x 2 x 3 ) = ( b 1 ′ b 2 ′ b 3 ′ ) \left( \begin{array}{c c} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & 0 & a_{33}' \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1}' \\ b_{2}' \\ b_{3}' \\ \end{array} \right)\\ a1100a12a220a13a23a33x1x2x3=b1b2b3

就是用 a 11 a_{11} a11 去清掃以下的 row , 接著用 a 22 a_{22} a22 去清掃以下的 row (水平的一條叫row, 垂直叫column) (上方的 row 不清掃, 只往下方的 row 清掃),
最後形成一個上三角矩陣, 再依序用後向代入得到 x 3 x_3 x3, x 2 x_2 x2, x 1 x_1 x1, 就立即得到解.

上面說的清掃, 就是用所謂的 行基本運算或列基本運算, 因為華語界的行列慣用定義不一致, 所以我這裡用 row 代表橫行, column 代表直行,


對一般性的線性聯立方程組
a 11    x 1 + a 12    x 2 + a 13    x 3 = b 1 a 21    x 1 + a 22    x 2 + a 23    x 3 = b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} a_{11} \;x_1 &+& a_{12} \;x_2 &+& a_{13} \;x_3 &=& b_{1} \\ a_{21} \;x_1 &+& a_{22} \;x_2 &+& a_{23} \;x_3 &=& b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3
透過適當的行列運算, 將 A A A 整理為等價之上三角矩陣
a 11 ′    x 1 + a 12 ′    x 2 + a 13 ′    x 3 = b 1 ′ ̸ a 21    x 1 + a 22 ′    x 2 + a 23 ′    x 3 = b 2 ′ ̸ a 31    x 1 + ̸ a 32    x 2 + a 33 ′    x 3 = b 3 ′ \begin{array}{c c} a_{11}' \;x_1 &+& a_{12}' \;x_2 &+& a_{13}' \;x_3 &=& b_{1}' \\ \not{a_{21}} \;x_1 &+& a_{22}' \;x_2 &+& a_{23}' \;x_3 &=& b_{2}' \\ \not{a_{31}} \;x_1 &+& \not{a_{32}} \;x_2 &+& a_{33}' \;x_3 &=& b_{3}'\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3

a 11 ′    x 1 + a 12 ′    x 2 + a 13 ′    x 3 = b 1 ′ 0    x 1 + a 22 ′    x 2 + a 23 ′    x 3 = b 2 ′ 0    x 1 + 0    x 2 + a 33 ′    x 3 = b 3 ′ \begin{array}{c c} a_{11}' \;x_1 &+& a_{12}' \;x_2 &+& a_{13}' \;x_3 &=& b_{1}' \\ 0 \;x_1 &+& a_{22}' \;x_2 &+& a_{23}' \;x_3 &=& b_{2}' \\ 0 \;x_1 &+& 0 \;x_2 &+& a_{33}' \;x_3 &=& b_{3}' \end{array} a11x10x10x1+++a12x2a22x20x2+++a13x3a23x3a33x3===b1b2b3

寫成矩陣表法就是上三角矩陣:
( a 11 ′ a 12 ′ a 13 ′ 0 a 22 ′ a 23 ′ 0 0 a 33 ′ ) ( x 1 x 2 x 3 ) = ( b 1 ′ b 2 ′ b 3 ′ ) \left( \begin{array}{c c} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & 0 & a_{33}' \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1}' \\ b_{2}' \\ b_{3}' \\ \end{array} \right)\\ a1100a12a220a13a23a33x1x2x3=b1b2b3


在原文書, 橫行基本運算稱為 elementrary row operation,
以下參考 Linear Algebra, 2Nd Edition - Kenneth Hoffmann And Ray Kunze
我們複習橫行基本運算的定義:
Def
row_operation_Linear Algebra, 2Nd Edition - Kenneth Hoffmann And Ray Kunze
就是中學教科書說的 三個基本的 row 運算 (橫行基本運算) elementrary row operation

  1. 對某一 row 換成, 該 row 乘上非零之常數
  2. 對某一 row 換成, 該 row 加上另一row 乘上非零之常數
  3. 對某兩個 row 置換(互換)

直行基本運算 elementrary column operation, 則是類似的操作, 只是改成對直行操作.

上面所謂轉成一個(等價)的上三角矩陣為何義?
先定義兩個 線性聯立方程組是等價的意思,
定義 兩個 線性聯立方程組是等價的, 如果彼此的方程式互為對方的方程式的線性組合,

則書中有簡單論證, 知道:
Theorem1 兩個等價的 線性聯立方程組的解是同樣的,
thm1_equivalentLinearSystem_Linear Algebra, 2Nd Edition - Kenneth Hoffmann And Ray Kunze
書中接著定義了兩個矩陣是等價的含意, 就是透過有限次三個基本的 row 運算可以將其中一個矩陣轉成另一個矩陣:
equivalentLinearSystem_matrix, 2Nd Edition - Kenneth Hoffmann And Ray Kunze
則知道, Gauss Elimination 高斯消去法 是透過基本行列運算 將 線性聯立方程組的 A A A 矩陣轉成一個的上三角矩陣, 這是與原矩陣等價的, 轉成上三角矩陣後, 線性聯立方程組就很好解了, 得到的解會與原解一致.

Exercises

Ex: 將以下 Maple 的 row operation 的動作用 Python 重寫一次:

AddRow(A, i, j, s)

MultiplyRow(A, i, s)

SwapRow(A, i, j)

Maple 官網 指令的說明:
• The AddRow(A, i, j, s) command replaces row i of A with row i + s * row j. This command can also be called as AddRows(A, i, j, s).

• The MultiplyRow(A, i, s) command replaces row i of A with s * row i.

• The SwapRow(A, i, j) command interchanges rows i and j of A. This command can also be called as SwapRows(A, i, j).

Ref: https://www.maplesoft.com/support/help/maple/view.aspx?path=Student%2FLinearAlgebra%2FAddRow link

程式碼實作 : Gauss Elimination 高斯消去法

先觀摩一下 codesansar.com 的程式碼

Ref: https://www.codesansar.com/numerical-methods/gauss-elimination-method-algorithm.htm link

他的程式碼寫的較詳細繁瑣, 容易見樹不見林,
尤其 A A A 的 entry 輸入是用input 的方法, 在 consola 逐個輸入, 矩陣較大, 就很不方便!
(緊接此後面, 本文作者已寫一個簡化版, 方便初學者直接抓住高斯消去法的主要精神及coding.)

以下 codesansar 的程式碼較瑣碎, 可以直接看註解例子說明, 直接抓住感覺

給一線性聯立方程組
2    x 1 + 3    x 2 + 1    x 3 = 4 4    x 1 + 1    x 2 + − 3    x 3 = − 2 − 1    x 1 + 2    x 2 + 2    x 3 = 2 \begin{array}{c c} 2 \;x_1 &+& 3 \;x_2 &+& 1 \;x_3 &=& 4 \\ 4 \;x_1 &+& 1 \;x_2 &+& -3 \;x_3 &=& -2 \\ -1 \;x_1 &+& 2 \;x_2 &+& 2 \;x_3 &=& 2 \end{array} 2x14x11x1+++3x21x22x2+++1x33x32x3===422
可以寫下對照之矩陣表法:
A x = B Ax=B Ax=B
( 2 3 1 4 1 − 3 − 1 2 2 ) ( x 1 x 2 x 3 ) = ( 4 − 2 2 ) \left( \begin{array}{c c} 2 & 3 & 1 \\ 4 & 1 & -3 \\ -1 & 2 & 2 \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} 4 \\ -2 \\ 2 \\ \end{array} \right)\\ 241312132x1x2x3=422
where
A = ( 2 3 1 4 1 − 3 − 1 2 2 ) x = ( x 1 x 2 x 3 ) B = ( 4 − 2 2 ) A = \left( \begin{array}{c c} 2 & 3 & 1 \\ 4 & 1 & -3 \\ -1 & 2 & 2 \\ \end{array} \right)\\ %A = \begin{pmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{pmatrix} \\ x = \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right)\\ B= \left( \begin{array}{c c} 4 \\ -2 \\ 2 \\ \end{array} \right) A=241312132x=x1x2x3B=422

##以下先觀摩一下 codesansar,com 的程式碼
##**Ref:** https://www.codesansar.com/numerical-methods/gauss-elimination-method-algorithm.htm [link](https://www.codesansar.com/numerical-methods/gauss-elimination-method-algorithm.htm)
##他的程式碼寫的較詳細繁瑣, 容易見樹不見林, 
##緊接此後面, 本文作者已寫一個簡化版, 方便初學者直接抓住高斯消去法的主要精神及coding.
# Ref: CodesSansar
# 河西寫的有分段落, 較清楚, 20210322

# Importing NumPy Library
import numpy as np
import sys

# Reading number of unknowns
n = int(input('Enter number of unknowns: '))

# Making numpy array of n x n+1 size and initializing 
# to zero for storing augmented matrix
a = np.zeros((n,n+1))

# Making numpy array of n size and initializing 
# to zero for storing solution vector
x = np.zeros(n)

# Reading augmented matrix coefficients
print('Enter Augmented Matrix Coefficients:')
for i in range(n):
    for j in range(n+1):
        a[i][j] = float(input( 'a['+str(i)+']['+ str(j)+']='))

# Applying Gauss Elimination
for i in range(n):
    if a[i][i] == 0.0:
        sys.exit('Divide by zero detected!')
        
    for j in range(i+1, n):
        ratio = a[j][i]/a[i][i]
        # 此處 codes, 河西寫的有分段落, 較清楚
        for k in range(n+1):
            a[j][k] = a[j][k] - ratio * a[i][k]

# Back Substitution
x[n-1] = a[n-1][n]/a[n-1][n-1]

for i in range(n-2,-1,-1):
    x[i] = a[i][n]
    
    for j in range(i+1,n):
        x[i] = x[i] - a[i][j]*x[j]
    
    x[i] = x[i]/a[i][i]

# Displaying solution
print('\nRequired solution is: ')
for i in range(n):
    print('X%d = %0.2f' %(i,x[i]), end = '\t')


##>>> 
##= RESTART: C:/Users/user/Desktop/Gauss Elimination Python Program_Codesansar.py
##Enter number of unknowns: 3
##Enter Augmented Matrix Coefficients:
##a[0][0]=2.0
##a[0][1]=3.0
##a[0][2]=1.0
##a[0][3]=4.0
##a[1][0]=4.0
##a[1][1]=1.0
##a[1][2]=-3.0
##a[1][3]=-2.0
##a[2][0]=-1.0
##a[2][1]=2.0
##a[2][2]=2.0
##a[2][3]=2.0
##
##Required solution is: 
##X0 = 2.00	X1 = -1.00	X2 = 3.00	

由作者改寫的程式碼觀察是否完成上三角矩陣

以下是作者改寫的程式碼, 會較清楚簡單
為了更清楚觀察了解程式碼的細節, 我們加寫可以列印出中間上三角矩陣的部分,

# By Prof. P-J Lai MATH NKNU 20220208
#為了更清楚觀察了解程式碼的細節,  我們加寫可以列印出中間上三角矩陣的部分,
#Gauss Elimination_UpperTriangle_Lai.py


# Importing NumPy Library
import numpy as np
import sys

N = 3
A = np.zeros((N,N+1))

A = [[10.0, -7.0, 0, 7.0],
         [-3.0, 2.0, 6.0, 4.0],
         [5.0, -1.0, 5.0, 6.0]]

x = np.zeros(N)

# Applying Gauss Elimination
for i in range(N):
    if A[i][i] == 0.0:
        sys.exit('Divide by zero detected!')
        
for k in range(0,N):
    pivot = A[k][k] # 取 pivot
    if pivot == 0.0:
        sys.exit('Divide by zero detected!')
    
    for i in range(k+1, N):
    ##      if i != k:
            d= A[i][k]
            for j1 in range(N+1):
                A[i][j1] = A[i][j1] - d*A[k][j1]/pivot

# 以下觀察是否已清掃成上三角矩陣
for k in range(N):
    for i in range(N+1):
        print("x{}{} = {:.1f}\t".format( k+1,i+1 , A[k][i]), end="\t")
    print("\n")
        

##輸出:
##>>> 
##= RESTART: D:/NEW_筆電的/網路免費軟體資料/Python教學/Python科學計算/線性代數/聯立方程式的解法2_GaussElimination消去法/Gauss Elimination_UpperTriangle_Lai.py
##x11 = 10.0		x12 = -7.0		x13 = 0.0		x14 = 7.0		
##
##x21 = 0.0		x22 = -0.1		x23 = 6.0		x24 = 6.1		
##
##x31 = 0.0		x32 = 0.0		x33 = 155.0		x34 = 155.0	  

輸出:

>>> 
= RESTART: D:\NEW_筆電的\網路免費軟體資料\Python教學\Python科學計算\線性代數\聯立方程式的解法2_GaussElimination消去法\Gauss Elimination_backwardSubstitution_Lai.py
x11 = 10.0		x12 = -7.0		x13 = 0.0		x14 = 7.0		

x21 = 0.0		x22 = -0.1		x23 = 6.0		x24 = 6.1		

x31 = 0.0		x32 = 0.0		x33 = 155.0		x34 = 155.0

注意一下以上 print 之呈現: 控制print 印出之小數位數只有一位, 讓視覺較舒服
print("x{}{} = {:.1f}\t".format( k+1,i+1 , A[k][i]), end="\t")

由作者改寫的程式碼接著觀察"後向替代法"之部分
# By Prof. P-J Lai MATH NKNU 20220209

#Gauss Elimination_backwardSubstitution_Lai.py

# Importing NumPy Library
import numpy as np
import sys

N = 3
A = np.zeros((N,N+1))
A = [[10.0, -7.0, 0, 7.0],
         [-3.0, 2.0, 6.0, 4.0],
         [5.0, -1.0, 5.0, 6.0]]

x = np.zeros(N)

# Applying Gauss Elimination
for i in range(N):
    if A[i][i] == 0.0:
        sys.exit('Divide by zero detected!')
 
for k in range(0,N):
    pivot = A[k][k] # 取 pivot
    if pivot == 0.0:
        sys.exit('Divide by zero detected!')
    
    for i in range(k+1, N):
    ##      if i != k:
            d= A[i][k]
            for j1 in range(N+1):
                A[i][j1] = A[i][j1] - d*A[k][j1]/pivot

#進行後向替代求出解
# Back Substitution
# 觀摩一下 codesansar,com 的程式碼
# 以下codesansar的程式碼較瑣碎, 可以直接看註解例子說明, 直接抓住感覺
# 可以不拘泥用 augmented matrix,
# 而是把 A 與  b 分開, 對照自己心中高斯消去法的的思緒會較清楚. 

x[N-1] = A[N-1][N]/A[N-1][N-1]
# 就是, 例如, x3 = b3/A33

for i in range(N-2,-1,-1):
    x[i] = A[i][N]
    # 就是, 例如, b2
    
    for j in range(i+1,N):
        x[i] = x[i] - A[i][j]*x[j]
        # A22*x2 = b2 - A23*x3
    
    x[i] = x[i]/A[i][i]
    # x2 = (b2 - A23*x3)/A22

# Displaying solution
print('\nRequired solution is: ')
for i in range(N):
    #print('X%d = %0.2f' %(i,x[i]), end = '\t')
    print('X{} = {:.2f}'.format(i,x[i]), end = '\t')

##輸出:
##Required solution is: 
##X0 = 0.00	X1 = -1.00	X2 = 1.00

輸出:

>>> 
= RESTART: D:\NEW_筆電的\網路免費軟體資料\Python教學\Python科學計算\線性代數\聯立方程式的解法2_GaussElimination消去法\Gauss Elimination_backwardSubstitution_Lai.py

Required solution is: 
X0 = 0.00	X1 = -1.00	X2 = 1.00	
Exercises

Ex: 練習在 consola(終端視窗) 狀態, 一動一動執行, 了解整個過程.

Ex: 如果你已經完成理論那節的習題, 用 Python程式 寫下以下的指令
AddRow(A, i, j, s), MultiplyRow(A, i, s), SwapRow(A, i, j),
試著用此三個指令重寫上面 高斯消去法的程式, 看看是否會更清楚, 更易閱讀與維護程式碼.

Ex: 用 list comprehension 重寫, 看看這樣寫出的codes 是否會較清楚直觀.

Ex: 可以不拘泥用 augmented matrix, 而是把 A 與 b 分開, 對照自己心中高斯消去法的的思緒, 看看這樣寫出的codes 是否會較清楚直觀.

程式碼實作 : Gauss-Jordan Elimination 高斯喬丹消去法

  • 高斯消去法是用行或列基本運算清掃成上三角矩陣
  • Gauss-Jordan 消去法是用行或列基本運算清掃成對角線矩陣

Gauss-Jordan 高斯喬丹消去法 寫成矩陣表法, 就是用行或列基本運算將 A 清掃成對角線矩陣:

A x = B Ax=B Ax=B
( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) ( x 1 x 2 x 3 ) = ( b 1 b 2 b 3 ) \left( \begin{array}{c c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1} \\ b_{2} \\ b_{3} \\ \end{array} \right)\\ a11a21a31a12a22a32a13a23a33x1x2x3=b1b2b3
⟹ 行 列 基 本 運 算 \stackrel{行列基本運算}{\Longrightarrow}
( 1 0 0 0 1 0 0 0 1 ) ( x 1 x 2 x 3 ) = ( b 1 ′ b 2 ′ b 3 ′ ) \left( \begin{array}{c c} 1 & 0 & 0 \\ 0 & 1& 0 \\ 0 & 0 & 1 \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} b_{1}' \\ b_{2}' \\ b_{3}' \\ \end{array} \right)\\ 100010001x1x2x3=b1b2b3

Gauss-Jordan 就是用 a 11 a_{11} a11 去清掃其餘 row, 接著用 a 22 a_{22} a22 去清掃其餘 row (水平的一條叫row, 垂直叫column) (上下方的 row 都清掃), 接著用 a 33 a_{33} a33 去清掃其餘 row, 最後形成一個對角線矩陣, 就可以立即得到解.
Gauss elimination 則是只往下方的 row 清掃 (上方的 row 不清掃), 最後形成一個上三角矩陣, 再依序用 “後向代入” 得 x 3 x_3 x3, x 2 x_2 x2, x 1 x_1 x1.

a 11    x 1 + a 12    x 2 + a 13    x 3 = b 1 a 21    x 1 + a 22    x 2 + a 23    x 3 = b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} a_{11} \;x_1 &+& a_{12} \;x_2 &+& a_{13} \;x_3 &=& b_{1} \\ a_{21} \;x_1 &+& a_{22} \;x_2 &+& a_{23} \;x_3 &=& b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3
A x = B Ax=B Ax=B
( 2.0 3.0 1.0 4.0 1.0 − 3.0 − 1 2 2 ) ( x 1 x 2 x 3 ) = ( 4.0 − 2.0 2.0 ) \left( \begin{array}{c c} 2.0 & 3.0 & 1.0 \\ 4.0 & 1.0 & -3.0 \\ -1 & 2 & 2 \\ \end{array} \right) \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right) = \left( \begin{array}{c c} 4.0 \\ -2.0 \\ 2.0 \\ \end{array} \right)\\ 2.04.013.01.021.03.02x1x2x3=4.02.02.0
where
A = ( 2.0 3.0 1.0 4.0 1.0 − 3.0 − 1 2 2 ) x = ( x 1 x 2 x 3 ) B = ( 4.0 − 2.0 2.0 ) A = \left( \begin{array}{c c} 2.0 & 3.0 & 1.0 \\ 4.0 & 1.0 & -3.0 \\ -1 & 2 & 2 \\ \end{array} \right)\\ x = \left( \begin{array}{c c} x_1 \\ x_2 \\ x_3 \\ \end{array} \right)\\ B= \left( \begin{array}{c c} 4.0 \\ -2.0 \\ 2.0 \\ \end{array} \right) A=2.04.013.01.021.03.02x=x1x2x3B=4.02.02.0

Gauss-Jordan 的 codes

Ref:

  • https://www.codesansar.com/numerical-methods/gauss-jordan-method-python-program-output.htm link
    有現成的數值計算的Python codes

  • 河西朝雄: Gauss-Jordan 參考 河西朝雄 Rei15.c, 改寫為 Python codes

以下為作者改寫自河西朝雄的C語言程式碼, 所以風格還是偏向 C 語言的迴圈式風格:

# By Prof. P-J Lai MATH NKNU 20201223
# 聯立方程式的解法1_Gauss-Jordan
# Ref: 河西朝雄 Rei15.c

N = 3
A = [[2.0, 3.0, 1.0, 4.0],
         [4.0, 1.0, -3.0, -2.0],
         [-1.0, 2.0, 2.0, 2.0]]

# 注意, 軸只有 N-1(3個),  每個主軸 row1~row3 分別除一次自己的 pivot, 故loop只做 0~ (N-1)
for k in range(N):
    pivot = A[k][k] # 取 pivot
    # 注意, 將row k 之 第 j 個column 除以 pivot 時, 是對每個 column 都做, 故loop做 0~N
    for j in range(N+1):
        A[k][j] = A[k][j]/pivot # 除以 pivot
    # 注意, 對各個 row 清掃, 只對每個主軸 row 做, row 個數只有 N,  故loop只做 0~ (N-1)  
    for i in range(N):
        if i != k:
            d= A[i][k]
             # 注意, 對每個 row 清掃時, 是對每個 column 都做, 故loop做 0~N
            for j1 in range(N+1):
                A[i][j1] = A[i][j1] - d*A[k][j1]


for k in range(N):
    print("x{a} = {b}".format( a=k+1, b=A[k][N]))
print(A)
import numpy as np
A1 = np.array(A)
print(A1)
# 輸出
##>>> 
##============== RESTART: C:/Users/user/Desktop/Gauss_Jordan_test.py =============
##x1 = 2.0
##x2 = -1.0
##x3 = 3.0
##[[1.0, 0.0, 0.0, 2.0], [0.0, 1.0, 0.0, -1.0], [-0.0, -0.0, 1.0, 3.0]]
##[[ 1.  0.  0.  2.]
## [ 0.  1.  0. -1.]
## [-0. -0.  1.  3.]]
##<class 'numpy.ndarray'>
Exercises

Ex: 如果你已經完成理論那節的習題: 用 Python程式 寫下以下的指令
AddRow(A, i, j, s), MultiplyRow(A, i, s), SwapRow(A, i, j),
試著用此三個指令重寫上面 高斯消去法的程式, 看看是否會更清楚, 更易閱讀與維護程式碼.

改寫為 Python 的 list comprehension 列表解析式的風格

以上是 C 語言的風格
以下改寫為 Python 的 list comprehension 列表解析式的風格

# By Prof. P-J Lai MATH NKNU 20201223
# 聯立方程式的解法1_Gauss-Jordan
# Ref: 河西朝雄 Rei15.c
# 以下用 列表解析式的寫法 list comprehension
# linearEq_1_Gauss-Jordan_listCompreh.py
# [ A[k][j] = A[k][j]/pivot for j in range(N+1)] 不行!

N = 3
A = [[2.0, 3.0, 1.0, 4.0],
         [4.0, 1.0, -3.0, -2.0],
         [-1.0, 2.0, 2.0, 2.0]]

# 注意, 軸只有 N-1個(3個),  每個主軸 row1~row3 分別除一次自己的 pivot, 故loop只做 0~ (N-1)
for k in range(N):
    pivot = A[k][k] # 取 pivot
    # 注意, 將row k 之 第 j 個column 除以 pivot 時, 是對每個 column 都做, 故loop做 0~N
    A[k] = [ A[k][j]/pivot for j in range(N+1)] 
    # 注意, 對各個 row 清掃, 只對每個主軸 row 做, row 個數只有 N,  故loop只做 0~ (N-1)  
    for i in range(N):
        if i != k:
            d= A[i][k]
             # 注意, 對每個 row 清掃時, 是對每個 column 都做, 故loop做 0~N
            A[i] = [ A[i][j1] - d*A[k][j1] for j1 in range(N+1)] 

[ print("x{a} = {b}".format( a=k+1, b=A[k][N])) for k in range(N)]


##>>> 
##= RESTART: C:\Users\user\Desktop\linearEq_1_Gauss-Jordan_listCompreh.py
##x1 = 2.0
##x2 = -1.0
##x3 = 3.0

Ex: 以上還可以用列表解析式再進一步簡化,
但是一般不建議列表解析式的用到含三層或三層以上, 因為已經不好閱讀了!
同學可以自己試著做看看用到含三層, 看看是否會更好閱讀, 或是閱讀與維護效果不好.

LU 分解

LU 分解可以定義成把高斯消去法的過程寫成演算法, 所以 LU 分解根本就是程式化的高斯消去法.

LU 分解 的現成指令, 只有在 scipy.linalg 與 sympy 有看到,numpy.linalg 則沒有,
兩者都有, cholesky, qr, svd.
scipy.linalg 比 numpy.linalg 多了 lu, shur

sympy 中有關 LU 分解的指令

from sympy import *
L, U, _ = A.LUdecomposition()

Ref:

  • 陳擎文教學網:python解線性代數, 線性代數第6章
    反矩陣inverse, LU分解算聯立方程式, https://acupun.site/lecture/linearAlgebra/pdfBooks/chp6-inverseMatrix.pdf link
  • LU 分解 的現成指令, 只有在 scipy.linalg 與 sympy 有看到,numpy.linalg 則沒有,
    兩者都有, cholesky, qr, svd.
    scipy.linalg 多 lu, shur 等
    Numpy linalg 最新列表: https://numpy.org/devdocs/reference/routines.linalg.html link
    SciPy linalg 最新列表: https://docs.scipy.org/doc/scipy/reference/linalg.html#scipy.linalg link
  • R. L. Burden, J. D. Faires, sec 6.5 p.388, Numerical analysis, Brooks/Cole, 7th ed., 2001

用寫程式的方式實現 LU 分解

以下討論用寫程式的方式實現 LU 分解:

Ref: R. L. Burden, J. D. Faires, sec 6.5 p.388, Numerical analysis, Brooks/Cole, 7th ed., 2001

LU 分解 演算法 的原理

高斯消去法, 可以用來對矩陣進行 LU 分解,
高斯消去法, 消去第一個column 的動作:

a 11 ′    x 1 + a 12 ′    x 2 + a 13 ′    x 3 = b 1 ′ ̸ a 21    x 1 + a 22 ′    x 2 + a 23 ′    x 3 = b 2 ′ ̸ a 31    x 1 + a 32 ′    x 2 + a 33 ′    x 3 = b 3 ′ \begin{array}{c c} a_{11}' \;x_1 &+& a_{12}' \;x_2 &+& a_{13}' \;x_3 &=& b_{1}'\\ \not{a_{21}} \;x_1 &+& a_{22}' \;x_2 &+& a_{23}' \;x_3 &=& b_{2}' \\ \not{a_{31}} \;x_1 &+& a_{32}' \;x_2 &+& a_{33}' \;x_3 &=& b_{3}'\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3
可以用一個矩陣乘法來表達:
( 1 0 0 − m 21 1 0 − m 31 0 1 ) ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) = ( a 11 ′ a 12 ′ a 13 ′ 0 a 22 ′ a 23 ′ 0 a 32 ′ a 33 ′ ) \begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 & \\ \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{pmatrix}= \begin{pmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & a_{32}' & a_{33}' \\ \end{pmatrix} 1m21m31010001a11a21a31a12a22a32a13a23a33=a1100a12a22a32a13a23a33
Where m j , 1 = a j 1 a 11 m_{j,1}=\frac{a_{j1}}{a_{11}} mj,1=a11aj1

同學可以自己有耐心的在紙上走一遍高斯消去法,
會發現對第一個直行column 往下消的動作:
( E j − m j , 1 E 1 ) → E j ,    j = 2 , 3. (E_j - m_{j,1}E_1) \rightarrow E_j, \;j=2,3. (Ejmj,1E1)Ej,j=2,3.
確實對照到以下矩陣相乘

( 1 0 0 − m 21 1 0 − m 31 0 1 ) ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) \begin{pmatrix} 1 & 0 & 0 \\ -m_{21} & 1 & 0 \\ -m_{31} & 0 & 1 & \\ \end{pmatrix} \left( \begin{array}{c c} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} \right) 1m21m31010001a11a21a31a12a22a32a13a23a33
以下我們觀察 對第一個直行column 往下消的過程中, 處理第2個 row 的動作:
( E 2 − m 2 , 1 E 1 ) → E 2 (E_2 - m_{2,1}E_1) \rightarrow E_2 (E2m2,1E1)E2 :
a 11    x 1 + a 12    x 2 + a 13    x 3 = b 1 a 21    x 1 + a 22    x 2 + a 23    x 3 = b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} a_{11} \;x_1 &+& a_{12} \;x_2 &+& a_{13} \;x_3 &=& b_{1} \\ a_{21} \;x_1 &+& a_{22} \;x_2 &+& a_{23} \;x_3 &=& b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11x1a21x1a31x1+++a12x2a22x2a32x2+++a13x3a23x3a33x3===b1b2b3

m 2 , 1 E 1 m_{2,1}E_1 m2,1E1, 就是先把第一個 row E 1 E_1 E1 乘上 − m 2 , 1 = − a 21 a 11 -m_{2,1}=-\frac{a_{21}}{a_{11}} m2,1=a11a21, 如下
⇒ \Rightarrow

− a 21 a 11 × ( a 11 ×    x 1 ) + − a 21 a 11 × ( a 12 ×    x 2 ) + − a 21 a 11 × ( a 13 ×    x 3 ) = − a 21 a 11 × ( b 1 ) a 21    x 1 + a 22    x 2 + a 23    x 3 = b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} -\frac{a_{21}}{a_{11}} \times ({a_{11}} \times \;x_1) &+& -\frac{a_{21}}{a_{11}} \times (a_{12} \times \;x_2) &+& -\frac{a_{21}}{a_{11}} \times (a_{13} \times \;x_3) &=& -\frac{a_{21}}{a_{11}} \times (b_{1}) \\ a_{21} \;x_1 &+& a_{22} \;x_2 &+& a_{23} \;x_3 &=& b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11a21×(a11×x1)a21x1a31x1+++a11a21×(a12×x2)a22x2a32x2+++a11a21×(a13×x3)a23x3a33x3===a11a21×(b1)b2b3

( E 2 − m 2 , 1 E 1 ) → E 2 (E_2 - m_{2,1}E_1) \rightarrow E_2 (E2m2,1E1)E2, 再把 第一個 row 加到 第二個 row, 此時我們保持 E 1 E_1 E1為原來的
⇒ \Rightarrow

a 11    x 1 + a 12    x 2 + a 13    x 3 = b 1 ( − a 21 a 11 × a 11 + a 21 )    x 1 + ( − a 21 a 11 × a 12 + a 22 )    x 2 + − a 21 a 11 × a 13 + a 23    x 3 = − a 21 a 11 × b 1 + b 2 a 31    x 1 + a 32    x 2 + a 33    x 3 = b 3 \begin{array}{c c} a_{11} \;x_1 &+& a_{12} \;x_2 &+& a_{13} \;x_3 &=& b_{1}\\ (-\frac{a_{21}} {a_{11}} \times {a_{11}} +a_{21}) \;x_1 &+& (-\frac{a_{21}} {a_{11}} \times {a_{12}} + a_{22}) \;x_2 &+& -\frac{a_{21}} {a_{11}} \times a_{13}+a_{23} \;x_3 &=& -\frac{a_{21}} {a_{11}} \times b_{1} +b_{2} \\ a_{31} \;x_1 &+& a_{32} \;x_2 &+& a_{33} \;x_3 &=& b_{3}\end{array} a11x1(a11a21×a11+a21)x1a31x1+++a12x2(a11a21×a12+a22)x2a32x2+++a13x3a11a21×a13+a23x3a33x3===b1a11a21×b1+b2b3
這樣操作之後, 就得到 a 2 , 1 a_{2,1} a2,1 成為 0.
( a 11 ′ a 12 ′ a 13 ′ 0 a 22 ′ a 23 ′ a 31 ′ a 32 ′ a 33 ′ ) \begin{pmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ a_{31}' & a_{32}' & a_{33}' \\ \end{pmatrix} a110a31a12a22a32a13a23a33
類似的, 同學可以手算驗證,
對第一個直行column 往下消的過程中, 處理第 3 個 row 的動作:
( E 3 − m 3 , 1 E 1 ) → E 3 (E_3 - m_{3,1}E_1) \rightarrow E_3 (E3m3,1E1)E3
m 3 , 1 E 1 m_{3,1}E_1 m3,1E1, 就是先把第一個 row E 1 E_1 E1 乘上 − m 3 , 1 = − a 31 a 11 -m_{3,1}=-\frac{a_{31}}{a_{11}} m3,1=a11a31,
再把 第一個 row 加到 第 3 個 row, ( E 3 − m 3 , 1 E 1 ) → E 3 (E_3 - m_{3,1}E_1) \rightarrow E_3 (E3m3,1E1)E3,
就得到 a 3 , 1 a_{3,1} a3,1 成為 0,
如此就完成 第一個直行column 往下消的程序.
( a 11 ′ a 12 ′ a 13 ′ 0 a 22 ′ a 23 ′ 0 a 32 ′ a 33 ′ ) \begin{pmatrix} a_{11}' & a_{12}' & a_{13}' \\ 0 & a_{22}' & a_{23}' \\ 0 & a_{32}' & a_{33}' \\ \end{pmatrix} a1100a12a22a32a13a23a33


一般性 n × \times × n 矩陣的公式,
Burden & Faires 書中稱此消去第1個直行column的矩陣為
The first Gaussian transformation matrix
第一個高斯變換矩陣負責清掃第1個直行column:
M ( 1 ) = ( 1 0 ⋯ ⋯ 0 − m 21 1 ⋱ ⋮ ⋮ 0 ⋱ ⋱ ⋮ ⋮ ⋮ ⋱ 1 0 − m n 1 0 ⋯ 0 1 ) , M^{(1)}=\begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -m_{21} & 1 & \ddots & & \vdots \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 1 & 0 \\ -m_{n1} & 0 & \cdots & 0 & 1 & \\ \end{pmatrix}, M(1)=1m21mn1010010001,
Where m j , 1 = a j 1 ( 1 ) a 11 ( 1 ) m_{j,1}=\frac{a_{j1}^{(1)}}{a_{11}^{(1)}} mj,1=a11(1)aj1(1)

消去第k個直行 column 的矩陣 The kth Gaussian transformation matrix
第k個高斯變換矩陣負責清掃第k個直行column:
M ( k ) = ( 1 0 0 ⋯ ⋯ 0 0 1 0 ⋱ ⋮ ⋮ 0 ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ − m k + 1 , k ⋱ 0 ⋮ ⋮ ⋮ ⋮ ⋮ 1 0 0 0 − m n , k 0 0 1 ) , M^{(k)}=\begin{pmatrix} 1 &0& 0 & \cdots & \cdots & 0 \\ 0 &1& 0 & \ddots & & \vdots \\ \vdots & 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots &-m_{k+1,k} & \ddots & 0 & \vdots \\ \vdots & \vdots & \vdots & \vdots & 1 & 0 & \\ 0 & 0 & -m_{n,k} & 0 & 0 & 1 & \\ \end{pmatrix}, M(k)=100010000mk+1,kmn,k0010001,
Where m j , k = a j k ( k ) a k k ( k ) m_{j,k}=\frac{a_{jk}^{(k)}}{a_{kk}^{(k)}} mj,k=akk(k)ajk(k)

透過這一連串的 M ( k ) M^{(k)} M(k) 乘上 A A A 就把 A 轉成上三角.
我們依照 Burden & Faires 書中的符號, 來觀察高斯消去法這一過程:
A x = b Ax=b Ax=b
持續左右兩邊乘上第k個高斯變換矩陣
M ( 1 ) A x = M ( 1 ) b M^{(1)}Ax=M^{(1)}b M(1)Ax=M(1)b
M ( k ) ⋯ M ( 1 ) A x = M ( k ) ⋯ M ( 1 ) b M^{(k)}\cdots M^{(1)} Ax=M^{(k)}\cdots M^{(1)}b M(k)M(1)Ax=M(k)M(1)b
M ( n − 1 ) ⋯ M ( k ) ⋯ M ( 1 ) A x = M ( n − 1 ) ⋯ M ( k ) ⋯ M ( 1 ) b M^{(n-1)}\cdots M^{(k)}\cdots M^{(1)} Ax=M^{(n-1)}\cdots M^{(k)}\cdots M^{(1)}b M(n1)M(k)M(1)Ax=M(n1)M(k)M(1)b
則知 上式左邊已經是轉成上三角了, 令為 U U U.
U = M ( n − 1 ) ⋯ M ( 1 ) A U=M^{(n-1)}\cdots M^{(1)} A U=M(n1)M(1)A
U U U 可以透過真實的乘上 M ( n − 1 ) ⋯ M ( 1 ) A M^{(n-1)}\cdots M^{(1)} A M(n1)M(1)A 去得到:
M ( n − 1 ) ⋯ M ( 1 ) A = U M^{(n-1)}\cdots M^{(1)} A=U M(n1)M(1)A=U
實際小矩陣的解題, 也可以透過我們熟悉的高斯消去法對 A A A得到的上三角矩陣, 透過這種方式去得到 U U U.
我們再進一步觀察, 左右兩邊同時乘上 ( M ( k ) ) − 1 (M^{(k)})^{-1} (M(k))1, 讓 A A A 的分解長相呈現出來:
( M ( n − 1 ) ) − 1 M ( n − 1 ) M ( n − 2 ) ⋯ M ( 1 ) A = ( M ( n − 1 ) ) − 1 U (M^{(n-1)})^{-1}M^{(n-1)}M^{(n-2)}\cdots M^{(1)} A=(M^{(n-1)})^{-1}U (M(n1))1M(n1)M(n2)M(1)A=(M(n1))1U
M ( n − 2 ) ⋯ M ( 1 ) A = ( M ( n − 1 ) ) − 1 U M^{(n-2)}\cdots M^{(1)} A=(M^{(n-1)})^{-1}U M(n2)M(1)A=(M(n1))1U
( M ( n − 2 ) ) − 1 M ( n − 2 ) ⋯ M ( 1 ) A = ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 U (M^{(n-2)})^{-1}M^{(n-2)}\cdots M^{(1)} A=(M^{(n-2)})^{-1}(M^{(n-1)})^{-1}U (M(n2))1M(n2)M(1)A=(M(n2))1(M(n1))1U
最終得到 A A A 的分解長相
A = ( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 U A=(M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1}U A=(M(1))1(M(n2))1(M(n1))1U
如果
( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 (M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1} (M(1))1(M(n2))1(M(n1))1
是一個下三角矩陣, 符號命名為 L L L, 則我們就完成
A = L × U A = L \times U A=L×U
的 LU 分解了!

( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 (M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1} (M(1))1(M(n2))1(M(n1))1 是一個下三角矩陣答案是明顯的, 因為上三角矩陣的反矩陣就是下三角矩陣(自己照反矩陣的公式走一下), 所以
L = ( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 L=(M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1} L=(M(1))1(M(n2))1(M(n1))1
確實是一個下三角矩陣, 所以 A = L × U A = L \times U A=L×U 的 LU 分解確實完成了!

L L L 必須透過真實的乘上 ( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 (M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1} (M(1))1(M(n2))1(M(n1))1 去得到:
L = ( M ( 1 ) ) − 1 ⋯ ( M ( n − 2 ) ) − 1 ( M ( n − 1 ) ) − 1 L=(M^{(1)})^{-1} \cdots (M^{(n-2)})^{-1}(M^{(n-1)})^{-1} L=(M(1))1(M(n2))1(M(n1))1
可以寫下明確的公式.
由以上的觀查, L U LU LU 就可以直接寫下公式去求得, 此部分就是演算法的核心.

LU 分解 演算法

Algorithm 6.4 Direct Factorization
To factor the n × \times ×n matrix A = ( a i j ) A=(a_{ij}) A=(aij) into the product of the lower-triangular matrix L = ( l i j ) L=(l_{ij}) L=(lij) and the upper-triangular matrix U = ( u i j ) U=(u_{ij}) U=(uij), that is, A = L U A=LU A=LU, where the main diagonal of either L L L or U U U is given:
INPUT dimension n; the entries a i j a_{ij} aij, 1 ≤ i , j ≤ n 1\le i, j \le n 1i,jn, of A A A; the diagonal l 11 , … , l n n l_{11},\dots,l_{nn} l11,,lnn of L L L or the diagonal u 11 , … , u n n u_{11},\dots,u_{nn} u11,,unn of U U U.
OUTPUT the entries l i j l_{ij} lij, 1 ≤ j ≤ i , 1 ≤ i ≤ n 1\le j \le i, 1\le i \le n 1ji,1in of L L L and the entries u i j u_{ij} uij, 1 ≤ j ≤ n , 1 ≤ i ≤ n 1\le j \le n, 1\le i \le n 1jn,1in of U U U.

  • STEP1
  • STEP2
  • STEP3
    * STEP4
    * STEP5
  • STEP6
  • STEP7

以下是 R. L. Burden, J. D. Faires 書附的 LU 分解的 Matlab codes:

% DIRECT FACTORIZATION ALGORITHM 6.4
%
% To factor the n by n matrix A = (A(I,J)) into the product of the
% lower triangular matrix L = (L(I,J)) and the upper triangular
% matrix U = (U(I,J)), that is A = LU, where the main diagonal of 
% either L or U consists of all ones:
%
% INPUT:   dimension n; the entries A(I,J), 1<=I, J<=n, of A;
%          the diagonal L(1,1), ..., L(N,N) of L or the diagonal
%          U(1,1), ..., U(N,N) of U.
%
% OUTPUT:  the entries L(I,J), 1<=J<=I, 1<=I<=n of L and the entries
%          U(I,J), I<=J<=n, 1<=I<=n of U.
 syms('AA', 'NAME', 'INP', 'OK', 'N', 'I', 'J', 'A');
 syms('FLAG', 'ISW', 'XL', 'M', 'KK', 'S', 'K', 'JJ');
 syms('SS', 'OUP', 's');
 TRUE = 1;
 FALSE = 0;
 fprintf(1,'This is the general LU factorization method.\n');
 fprintf(1,'The array will be input from a text file in the order:\n');
 fprintf(1,'A(1,1), A(1,2), ..., A(1,N), \n') 
 fprintf(1,'A(2,1), A(2,2), ..., A(2,N),\n');
 fprintf(1,'..., A(N,1), A(N,2), ..., A(N,N)\n\n');
 fprintf(1,'Place as many entries as desired on each line, but separate\n');
 fprintf(1,'entries with\n');
 fprintf(1,'at least one blank.\n\n\n');
 fprintf(1,'Has the input file been created? - enter Y or N.\n');
 AA = input(' ','s');
 if AA == 'Y' | AA == 'y' 
 fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
 fprintf(1,'for example:   A:\\DATA.DTA\n');
 NAME = input(' ','s');
 INP = fopen(NAME,'rt');
 OK = FALSE;
 while OK == FALSE 
 fprintf(1,'Input the dimension n - an integer.\n');
 N = input(' ');
 if N > 0 
 A = zeros(N,N);
 XL = zeros(1,N);
 for I = 1 : N 
 for J = 1 : N 
 A(I,J) = fscanf(INP, '%f',1);
 end;
 end;
 OK = TRUE;
 fclose(INP);
 else fprintf(1,'The number must be a positive integer.\n');
 end;
 end;
 fprintf(1,'Choice of diagonals:\n');
 fprintf(1,'1. Diagonal of L consists of ones\n'); 
 fprintf(1,'2. Diagonal of U consists of ones\n');
 fprintf(1,'Please enter 1 or 2.\n');
 FLAG = input(' ');
 if FLAG == 1 
 ISW = 0;
 else
 ISW = 1;
 end
 else 
 fprintf(1,'The program will end so the input file can be created.\n');
 OK = FALSE;
 end;
 if OK == TRUE 
 for I = 1 : N 
 XL(I) = 1;
 end;
% STEP 1
 if abs(A(1,1)) <= 1.0e-20 
 OK = FALSE;
 else
% the entries of L below the main diagonal will be placed 
% in the corresponding entries of A; the entries of U 
% above the main diagonal will be placed in the 
% corresponding entries of A; the main diagonal which 
% was not input will become the main diagonal of A; 
% the input main diagonal of L or U is, 
% of course, placed in XL
 A(1,1) = A(1,1)/XL(1);
% STEP 2
 for J = 2 : N 
 if ISW == 0 
% first row of U
 A(1,J) = A(1,J)/XL(1);
% first column of L
 A(J,1) = A(J,1)/A(1,1);
 else
% first row of U
 A(1,J) = A(1,J)/A(1,1);
% first column of L
 A(J,1) = A(J,1)/XL(1);
 end;
 end;
% STEP 3
 M = N-1;
 I = 2;
 while I <= M & OK == TRUE 
% STEP 4
 KK = I-1;
 S = 0;
 for K = 1 : KK 
 S = S-A(I,K)*A(K,I);
 end;
 A(I,I) = (A(I,I)+S)/XL(I);
 if abs(A(I,I)) <= 1.0e-20 
 OK = FALSE;
 else
% STEP 5
 JJ = I+1;
 for J = JJ : N 
 SS = 0;
 S = 0;
 for K = 1 : KK 
 SS = SS-A(I,K)*A(K,J);
 S = S-A(J,K)*A(K,I);
 end;
 if ISW == 0 
% Ith row of U
 A(I,J) = (A(I,J)+SS)/XL(I);
% Ith column of L
 A(J,I) = (A(J,I)+S)/A(I,I);
 else
% Ith row of U
 A(I,J) = (A(I,J)+SS)/A(I,I);
% Ith column of L
 A(J,I) = (A(J,I)+S)/XL(I);
 end;
 end;
 end;
 I = I+1;
 end;
 if OK == TRUE 
% STEP 6
 S = 0;
 for K = 1 : M 
 S = S-A(N,K)*A(K,N);
 end;
 A(N,N) = (A(N,N)+S)/XL(N);
% If A(N,N) = 0 then A = LU but the matrix is singular.
% Process is complete, all entries of A have been determined.
% STEP 7
 fprintf(1,'Choice of output method:\n');
 fprintf(1,'1. Output to screen\n');
 fprintf(1,'2. Output to text file\n');
 fprintf(1,'Please enter 1 or 2\n');
 FLAG = input(' ');
 if FLAG == 2 
 fprintf(1,'Input the file name in the form - drive:\\name.ext\n');
 fprintf(1,'For example   A:\\OUTPUT.DTA\n');
 NAME = input(' ','s');
 OUP = fopen(NAME,'wt');
 else
 OUP = 1;
 end;
 fprintf(OUP, 'GENERAL LU FACTORIZATION\n\n');
 if ISW == 0  
 fprintf(OUP, 'The diagonal of L consists of all entries = 1.0\n');
 else
 fprintf(OUP, 'The diagonal of U consists of all entries = 1.0\n');
 end;
 fprintf(OUP, '\nEntries of L below/on diagonal and entries of U above');
 fprintf(OUP, '/on diagonal\n');
 fprintf(OUP, '- output by rows in overwrite format:\n');
 for I = 1 : N 
 for J = 1 : N 
 fprintf(OUP, ' %11.8f', A(I,J));
 end;
 fprintf(OUP, '\n');
 end;
 if OUP ~= 1 
 fclose(OUP);
 fprintf(1,'Output file %s created successfully \n',NAME);
 end;
 end;
 end;
 if OK == FALSE 
 fprintf(1,'The matrix does not have an LU factorization.\n');
 end;
 end;

LU 分解定理

甚麼條件下, 一個矩陣一定保證, 存在 LU 分解?

Ref: R. L. Burden, J. D. Faires, sec 6.5 p.365, Numerical analysis, Brooks/Cole, 7th ed., 2001.

Theorem 6.17 LU 分解定理
假設 A x = b Ax=b Ax=b
以執行高斯消去法, 且在執行高斯消去法時, 無須做 row 的置換(無須挑選 非零的pivot 元素), 則 A 可以分解為 上三角矩陣與下三角矩陣相乘,
A = L × U A=L \times U A=L×U
U = = ( a 11 ( 1 ) a 12 ( 1 ) a 13 ( 1 ) ⋯ ⋯ a 1 n ( 1 ) 0 a 22 ( 2 ) ⋱ ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ 0 ⋱ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮ a n − 1 , n − 1 ( n − 1 ) a n − 1 , n ( n − 1 ) 0 ⋯ 0 ⋯ 0 a n , n ( n ) ) , U==\begin{pmatrix} a_{11}^{(1)} & a_{12}^{(1)}& a_{13}^{(1)} & \cdots & \cdots & a_{1n}^{(1)} \\ 0 & a_{22}^{(2)} & \ddots & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots &0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \vdots & a_{n-1,n-1}^{(n-1)} & a_{n-1,n}^{(n-1)} & \\ 0 & \cdots & 0 & \cdots & 0 & a_{n,n}^{(n)} & \\ \end{pmatrix}, U==a11(1)00a12(1)a22(2)a13(1)00an1,n1(n1)0a1n(1)an1,n(n1)an,n(n),,
L = ( 1 0 0 ⋯ ⋯ 0 m 21 1 0 ⋱ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮ ⋮ ⋮ m k + 1 , k ⋱ 0 ⋮ ⋮ ⋮ ⋮ ⋮ 1 0 m n 1 ⋯ m n , k ⋯ m n , n − 1 1 ) , L=\begin{pmatrix} 1 &0& 0 & \cdots & \cdots & 0 \\ m_{21} &1& 0 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \vdots &m_{k+1,k} & \ddots & 0 & \vdots \\ \vdots & \vdots & \vdots & \vdots & 1 & 0 & \\ m_{n1} & \cdots & m_{n,k} & \cdots & m_{n,n-1} & 1 & \\ \end{pmatrix}, L=1m21mn10100mk+1,kmn,k01mn,n1001,
Where m j , k = a j k ( k ) a k k ( k ) m_{j,k}=\frac{a_{jk}^{(k)}}{a_{kk}^{(k)}} mj,k=akk(k)ajk(k),
and a j , k ( i ) a_{j,k}^{(i)} aj,k(i) is the ith iteration a i , k a_{i,k} ai,k

以上 Burden and Faires 給的條件是 假設 A x = b Ax=b Ax=b 可以執行高斯消去法, 等,


Ref: Kincaid and Cheney, sec 4.2, P.156,Theorem1, Numerical analysis, Brooks/Cole, 3th ed., 2002, 所提的定理Theorem1, 它的前提條件是:
all n leading principal minors of the n × \times ×n matrix A are nonsingular
Theorem1 Theorem on LU-Decomposition
If all n leading principal minors of the n × \times ×n matrix A are nonsingular, then A A A has an LU-decomposition.

Appendix

\begin{bmatrix}

以前我學 Latex 寫矩陣, 標準的寫法有點麻煩, 使用 \begin{array}

A = \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right)\\

A = ( 10 − 7 0 − 3 2 6 5 − 1 5 ) A = \left( \begin{array}{c c} 10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{array} \right) A=1035721065

現在可以用
\begin{pmatrix} 左右小括號矩陣

$$ A =  
\begin{pmatrix}
10 & -7 & 0 \\ 
-3 & 2 & 6 \\ 
5 & -1 & 5 \\ 
\end{pmatrix} $$

A = ( 10 − 7 0 − 3 2 6 5 − 1 5 ) A = \begin{pmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{pmatrix} A=1035721065
\begin{bmatrix} 左右中括號矩陣

$$
A =  
\begin{bmatrix}
10 & -7 & 0 \\ 
-3 & 2 & 6 \\ 
5 & -1 & 5 \\ 
\end{bmatrix} 
$$

A = [ 10 − 7 0 − 3 2 6 5 − 1 5 ] A = \begin{bmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{bmatrix} A=1035721065

\begin{Bmatrix} 左右 大括號矩陣

$$A =  \begin{Bmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{Bmatrix} $$

A = { 10 − 7 0 − 3 2 6 5 − 1 5 } A = \begin{Bmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{Bmatrix} A=1035721065

\begin{vmatrix} 左右絕對值括號矩陣

$$A =  \begin{vmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{vmatrix} $$

A = ∣ 10 − 7 0 − 3 2 6 5 − 1 5 ∣ A = \begin{vmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{vmatrix} A=1035721065

\begin{Vmatrix} 左右雙絕對值(norm)括號矩陣

$$A =  \begin{Vmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{Vmatrix} $$

A = ∥ 10 − 7 0 − 3 2 6 5 − 1 5 ∥ A = \begin{Vmatrix}10 & -7 & 0 \\ -3 & 2 & 6 \\ 5 & -1 & 5 \\ \end{Vmatrix} A=1035721065

控制print 印出之小數位數只有一位

注意一下以上print 之呈現: 控制print 印出之小數位數只有一位, 讓視覺較舒服
print("x{}{} = {:.1f}\t".format( k+1,i+1 , A[k][i]), end="\t")

scipy.linalg 中有關矩陣分解的指令

Decompositions :

lu(a[, permute_l, overwrite_a, check_finite])

Compute pivoted LU decomposition of a matrix.

lu_factor(a[, overwrite_a, check_finite])

Compute pivoted LU decomposition of a matrix.

lu_solve(lu_and_piv, b[, trans, …])

Solve an equation system, a x = b, given the LU factorization of a

svd(a[, full_matrices, compute_uv, …])

Singular Value Decomposition.

svdvals(a[, overwrite_a, check_finite])

Compute singular values of a matrix.

diagsvd(s, M, N)

Construct the sigma matrix in SVD from singular values and size M, N.

orth(A[, rcond])

Construct an orthonormal basis for the range of A using SVD

null_space(A[, rcond])

Construct an orthonormal basis for the null space of A using SVD

ldl(A[, lower, hermitian, overwrite_a, …])

Computes the LDLt or Bunch-Kaufman factorization of a symmetric/ hermitian matrix.

cholesky(a[, lower, overwrite_a, check_finite])

Compute the Cholesky decomposition of a matrix.

cholesky_banded(ab[, overwrite_ab, lower, …])

Cholesky decompose a banded Hermitian positive-definite matrix

cho_factor(a[, lower, overwrite_a, check_finite])

Compute the Cholesky decomposition of a matrix, to use in cho_solve

cho_solve(c_and_lower, b[, overwrite_b, …])

Solve the linear equations A x = b, given the Cholesky factorization of A.

cho_solve_banded(cb_and_lower, b[, …])

Solve the linear equations A x = b, given the Cholesky factorization of the banded Hermitian A.

polar(a[, side])

Compute the polar decomposition.

qr(a[, overwrite_a, lwork, mode, pivoting, …])

Compute QR decomposition of a matrix.

qr_multiply(a, c[, mode, pivoting, …])

Calculate the QR decomposition and multiply Q with a matrix.

qr_update(Q, R, u, v[, overwrite_qruv, …])

Rank-k QR update

qr_delete(Q, R, k, int p=1[, which, …])

QR downdate on row or column deletions

qr_insert(Q, R, u, k[, which, rcond, …])

QR update on row or column insertions

rq(a[, overwrite_a, lwork, mode, check_finite])

Compute RQ decomposition of a matrix.

qz(A, B[, output, lwork, sort, overwrite_a, …])

QZ decomposition for generalized eigenvalues of a pair of matrices.

ordqz(A, B[, sort, output, overwrite_a, …])

QZ decomposition for a pair of matrices with reordering.

schur(a[, output, lwork, overwrite_a, sort, …])

Compute Schur decomposition of a matrix.

rsf2csf(T, Z[, check_finite])

Convert real Schur form to complex Schur form.

hessenberg(a[, calc_q, overwrite_a, …])

Compute Hessenberg form of a matrix.

cdf2rdf(w, v)

Converts complex eigenvalues w and eigenvectors v to real eigenvalues in a block diagonal form wr and the associated real eigenvectors vr, such that.

cossin(X[, p, q, separate, swap_sign, …])

Compute the cosine-sine (CS) decomposition of an orthogonal/unitary matrix.

See also

scipy.linalg.interpolative – Interpolative matrix decompositions

References

  • R. L. Burden, J. D. Faires, Numerical analysis, Brooks/Cole, 7th ed., 2001.

  • Kincaid and Cheney, sec 4.2, P.156,Theorem1, Numerical analysis, Brooks/Cole, 3th ed., 2002.

  • Clever B Moler, Numerical computing with Matlab
    Moler的書: Ch2 線性代數

  • Python Numpy全世界最長基礎教程最適合小白學習 還詳細很全速拿, https://twgreatdaily.com/AhWyTG8BMH2_cNUgWU4g.html link.

  • 推薦: 這裡有很具體的指令用法, 用在線性代數課程上: 陳擎文教學網:python解線性代數, https://acupun.site/lecture/linearAlgebra/index.htm link

  • https://www.codesansar.com/numerical-methods/gauss-jordan-method-python-program-output.htm link
    有現成的數值計算的Python codes

  • 河西朝雄

  • https://www.maplesoft.com/support/help/maple/view.aspx?path=Student%2FLinearAlgebra%2FAddRow link

  • LU 分解 的現成指令, 只有在 scipy 與 sympy 有看到, NumPy 則沒有,
    陳擎文教學網:python解線性代數, 線性代數第6章
    反矩陣inverse, LU分解算聯立方程式, https://acupun.site/lecture/linearAlgebra/pdfBooks/chp6-inverseMatrix.pdf link

  • LU 分解 的現成指令, 只有在 scipy.linalg 與 sympy 有看到, numpy.linalg 則沒有,
    兩者都有, cholesky, qr, svd.
    scipy.linalg 多 lu, shur
    Numpy linalg 最新列表: https://numpy.org/devdocs/reference/routines.linalg.html link
    SciPy linalg 最新列表: https://docs.scipy.org/doc/scipy/reference/linalg.html#scipy.linalg link
    SciPy linalg Decompositions(矩陣分解) 最新列表:
    https://docs.scipy.org/doc/scipy/reference/linalg.html#decompositions link

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值