GeoGebra 與數學探索 3 GeoGebra 在微積分的探索與動態演示

GeoGebra  逐步描點 模擬牛頓法


Goal: GeoGebra 除了可以輕鬆的讓我們以即時動態反饋圖形的方式模擬探索幾何的問題, 或是幫我們驗證答案, 也可以進行數論、微積分、矩陣等等各方面的探索, 在問題尺度不大又需要即時以圖像視覺呈現探索過程的情況下, GeoGebra 其實優於以寫程式的方式進行探索.

“Talk is cheap. Show me the code.”
― Linus Torvalds

老子第41章
上德若谷
大白若辱
大方無隅
大器晚成
大音希聲
大象無形
道隱無名

拳打千遍, 身法自然

“There’s no shortage of remarkable ideas, what’s missing is the will to execute them.” – Seth Godin
「很棒的點子永遠不會匱乏,然而缺少的是執行點子的意志力。」—賽斯.高汀


因為要在網誌上慢慢呈現本系列文章完整的內容,需要很長的時間,如果有讀者想急著往後面的系列學,完整的作者早期內容,可以直接閱讀作者在高雄師範大學上課講義pdf 檔,下載點在後面參考文件的載點,免費下載:
賴鵬仁, GeoGebra 與動態幾何 20200925 申請優良教材 免費pdf 下載點 link

本系列文章:

  • GeoGebra 與數學探索 1 GeoGebra 入門到進階之整體介紹 1 link

  • GeoGebra 與數學探索 2 Escher 愛雪磁磚設計法則 - 高雄燕巢深水國小科展指導 link

  • GeoGebra 與數學探索 3 GeoGebra 在微積分的探索與動態演示 link

  • GeoGebra 與數學探索 2 GeoGebra 在幾何的探索與動態演示介紹 1 link

  • GeoGebra 與數學探索 4 GeoGebra 在線性代數(矩陣)的探索與動態演示 link

  • GeoGebra 與數學探索 5 GeoGebra 中使用試算表spreadsheet 產生批量動畫演示 link

  • GeoGebra 與數學探索 6 GeoGebra 中使用GGBScript指令 link

  • GeoGebra 與數學探索 7 GeoGebra 中使用JavaScript link


Abstract:

對於一個不太複雜的數學函數圖形, 微積分課本的例子或是習題的圖, 動畫等等,
GeoGebra 會更適合快速產生數學圖形, 動畫, 快速加上各類註解調整顏色等, 或做一個不太複雜的數學實驗, 可以用滑鼠拖拉設計, 同樣的效果, 用 Python 等程式語言會反而花很多時間,
對於很忙碌的老師想要快速做出一個數學圖形用在數學考卷或是講義上, 用程式語言會緩不濟急, 有割雞用牛刀的味道, 此時用Geogebra會較明智.

  • GeoGebra 一般可以不需要用到程式語言, 可以完全用滑鼠拖拉設計, 類似 GSP.
  • 但是 GeoGebra 也有自己的指令, 叫 GGBScript, 分為微積分類、幾何類、代數類等等
  • 要使用完整的程式語言, GeoGebra 也可以執行 JavaScript 程式語言 (操控網頁的語言), 如果要使用較彈性的 for 迴圈, 可以 選擇使用 JavaScript.

GeoGebra 在微積分的探索與動態演示

GeoGebra 在中學數理科到大一微積分相當夠用

GeoGebra 製作數值積分梯形法

GeoGebra 可以直接以滑鼠拖拉畫圖, 以滑桿功能展示即時動態變化, 也有不少微積分的指令, 例如以下我用 GeoGebra 製作的數值積分梯形法的動態展示, 加上文字說明, 按鈕等, 同樣的效果, 如果僅是靜態圖, 用 Python+Matplotlib 的 pyplot畫, 恐怕要花上兩三倍的時間.
數值積分梯形法講解用 Sequence

GeoGebra 製作數值積分初步

GeoGebra 製作數值積分用Sequence 指令產生

  1. 先產生函數 f(x)= 1/100 * x^3 + 1/50 * x^2 + 5
    輸入欄位 直接輸入以上的內容,
    x^3 代表 x 3 x^3 x3,
    * 代表相乘
    所以 f(x)= 1/100 * x^3 + 1/50 * x^2 + 5
    代表
    f ( x ) = 1 100 x 3 + 1 50 x 2 + 5 f(x)= \frac{1}{100} x^3 + \frac{1}{50} x^2 + 5 f(x)=1001x3+501x2+5

  2. 輸入 a=0,

  3. 輸入 b=3

再輸入欄位逐次輸入以下指令:
4. X_{k}=Sequence(a+((b-a)/(10))* k,k,0,10)
5. P_{k}=Sequence((X_{k}(k),0),k,1,11)
6. Q_{k}=Sequence((X_{k}(k),f(X_{k}(k))),k,1,11)
7. rectangularList=Sequence(Polygon(P_{k}(k),Q_{k}(k),(X_{k}(k+1),f(X_{k}(k))),P_{k}(k+1)),k,1,10)


Ex: 請將切割數10 改成變動可以調整的
Ans:
增加產生滑桿 n之動作,

  1. 產生滑桿 n 從1~30, n 為切割之個數, 30 可以自己改變.

  2. X1_{k}=Sequence(a+((b-a)/(n))*k,k,0,n)

  3. P1_{k}=Sequence((X1_{k}(k),0),k,1,n+1)

  4. Q1_{k}=Sequence((X1_{k}(k),f(X1_{k}(k))),k,1,n+1)

  5. rectangularList1=Sequence(Polygon(P1_{k}(k),Q1_{k}(k),(X1_{k}(k+1),f(X1_{k}(k))),P1_{k}(k+1)),k,1,n+1)

或是將切割之寬 (b-a)/n 令為 deltaX,
5. 輸入 deltaX=(b-a)/n, 為切割之寬度.

  1. X1_{k}=Sequence(a+(deltaX)*k,k,0,n)

  2. P1_{k}=Sequence((X1_{k}(k),0),k,1,n+1)

  3. Q1_{k}=Sequence((X1_{k}(k),f(X1_{k}(k))),k,1,n+1)

  4. rectangularList1=Sequence(Polygon(P1_{k}(k),Q1_{k}(k),(X1_{k}(k+1),f(X1_{k}(k))),P1_{k}(k+1)),k,1,n+1)

GeoGebra 製作數值積分用試算表法

  1. 先產生函數 f(x)= 1/100 * x^3 + 1/50 * x^2 + 5
    輸入欄位 直接輸入以上的內容,
    x^3 代表 x 3 x^3 x3,
    * 代表相乘
    所以 f(x)= 1/100 * x^3 + 1/50 * x^2 + 5
    代表
    f ( x ) = 1 100 x 3 + 1 50 x 2 + 5 f(x)= \frac{1}{100} x^3 + \frac{1}{50} x^2 + 5 f(x)=1001x3+501x2+5

  2. 輸入 a=0,

  3. 輸入 b=3

  4. 產生滑桿 n 從1~30, n 為切割之個數, 30 可以自己改變.

  5. 輸入 deltaX=(b-a)/n, 為切割之寬度.

  6. 先點選上方之工具列: 檢視/試算表,
    會出現試算表區塊
    先在A欄位 產生1,2,3,4,等
    可以一個 一個打進去, 也可以讓他自己按規律產生, 做法是, 先在 A1 輸入 1 (直接點選該欄位打字進去即可), 點選 A2 欄位輸入 A1+1, 游標移到 A2 的右下方呈現十字形時, 壓住滑鼠拖曳往下, 類似微軟 Excel 的作法, 就會依此規律產生接下的 A3, A4,等.
    就會按 A(k+1)=Ak+1 的規律往下自動產生A各欄位的值,

  7. B1欄位 輸入 (a + deltaX(A1-1),0), 代表第一個切割點之位置, (往下拖曵, 就會產生所有的切割端點).

  8. 其中 deltaX = (b-a)/n, n 為切割之個數, deltaX 為切割之寬度.

  9. 游標移到 B1 的右下方呈現十字形時, 壓住滑鼠拖曳往下, 類似微軟 Excel 的作法, 就會依此規律產生接下的 B2, B3, B4,等, 即各個切割點.

  10. C1 輸入 Polygon[B1,B2,(x(B2),f(B2)),(x(B1),f(B1))]
    再往下拖曳, 就可以產生其他梯形塊.
    數值積分梯形法講解用試算表_數學年會完整

GeoGebra 製作 Varberg 微積分原文教科書的題目圖

例如以下是我用 GeoGebra 製作的 微積分考卷的圖, 要呈現 Varberg微積分那本原文教科書的某題之圖, 加上自己的設計, 用 GeoGebra 製作 3D 函數圖也很輕鬆:
201606光通期末考極值1

GeoGebra 製作兩變數函數求極值說明圖

以下是用 GeoGebra 製作的 兩變數函數 f ( x , y ) = 4 + x y − x 2 − y 2 f(x,y)=4+xy-x^2-y^2 f(x,y)=4+xyx2y2 侷限在單位圓上求極值, 的說明圖:
Varberg_P670_12.9Example5_20210413jpg

同樣的效果, 如果僅是靜態圖, 用 pyplot, 恐怕要手忙腳亂一陣子, 3D 可能還要動用到MayaView等, 如果是動畫, 還得查一下 Tkinter 的指令等.

Refrences:

  • 賴鵬仁, 用免費的電腦資源協助數學的教學,學習與探索_復華中學教師營_中山大學應數系高中數學人才班_2021, https://blog.csdn.net/m0_47985483/article/details/113790840 link

  • GeoGebra 官網: https://www.geogebra.org/ link

  • intro-en_4_2_簡體中譯前半段_2015_103-GeoGebra-使用手冊之出處_有tangram, Geogebra 官網 之 intro-en_4_2.pdf 之前半段, 由志工翻譯成中文, 免費pdf 下載點 link

  • GeoGebra 指令完整列表 DivisorsList等等 基隆女中上課教材1030319: 免費pdf 下載點 link

  • geogebra与matlab,浅谈Geogebra在大学数学教学中的应用 link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值