// 给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
// 子数组 是数组中的一个连续部分。
// 输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
// 输出:6
// 解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
解法:动态规划
int maxSubArraY(int* nums, int numSize)
{
int pre=0,maxAns= nums[0];//1.滚动数组:设置一个变量pre存放数组中的数 2.将数据最大值maxAns初始化设置为第一个数组中的值
for(int i =0;i<numSize;i++){
pre=fmax(pre+nums[i],nums[i]);//将第二个数和第一个加第二个数进行比较,取大的存放到maxans中
maxAns=fmax(maxAns,pre);
}
return maxAns;
}//时间复杂度:O(n)
fmax:c++中求两个浮点数最大值的函数
通常我们遍历子串或者子序列有三种遍历方式
1.以某个节点为开头的所有子序列: 如 [a],[a, b],[ a, b, c] ... 再从以 b 为开头的子序列开始遍历 [b] [b, c]。常用于暴力破解
2.根据子序列的长度为标杆,如先遍历出子序列长度为 1 的子序列,在遍历出长度为 2 的 等等。
3.以子序列的结束节点为基准,先遍历出以某个节点为结束的所有子序列,因为每个节点都可能会是子序列的结束节点,因此要遍历下整个序列,如: 以 b 为结束点的所有子序列: [a , b] [b] 以 c 为结束点的所有子序列: [a, b, c] [b, c] [ c ]。
动态转移方程:f(i)=max{f(i−1)+nums[i],nums[i]}
将f(i)固定为一个变量就是滚动数组的应用——>将空间复杂度从O(n)降低为O(1)